
a product of MVTec

Solution Guide I
Basics

HALCON 24.11 Progress-Steady

How to use HALCON’s machine vision methods, Version 24.11.1.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2007-2024 by MVTec Software GmbH, Munich, Germany

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

AMD and AMD Athlon™ are either trademarks or registered trademarks of Advanced Micro Devices, Inc.
OpenCL™ and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
Intel® , the Intel® logo, OpenVINO™ , the OpenVINO™ logo, and Pentium® are either trademarks or registered trademarks
of Intel® Corporation or its subsidiaries.
Linux ® is a registered trademark of Linus Torvalds.
Microsoft, Windows, Microsoft .NET, Visual C++ and Visual Basic are either trademarks or registered trademarks of Microsoft
Corporation.
NVIDIA, CUDA, cuBLAS, and cuDNN are either trademarks or registered trademarks of NVIDIA Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

Contents

1 Guide to HALCON Methods 13
1.1 Color Inspection . 14
1.2 Completeness Check . 14
1.3 Identification . 14
1.4 Measuring and Comparison 2D . 14
1.5 Measuring and Comparison 3D . 15
1.6 Object Recognition 2D . 15
1.7 Object Recognition 3D . 15
1.8 Position Recognition 2D . 16
1.9 Position Recognition 3D . 16
1.10 Print Inspection . 16
1.11 Quality Inspection . 17
1.12 Robot Vision . 17
1.13 Security System . 17
1.14 Surface Inspection . 17
1.15 Texture Inspection . 18
1.16 Text Processing . 18

1.16.1 String Encoding . 19

2 Image Acquisition 21
2.1 Basic Concept . 21

2.1.1 Open Image Acquisition Device . 21
2.1.2 Acquire Image(s) . 22
2.1.3 Close Image Acquisition Device . 22
2.1.4 A First Example . 22

2.2 Extended Concept . 22
2.2.1 Open Image Acquisition Device . 22
2.2.2 Set Parameters . 23
2.2.3 Acquire Image(s) . 23

2.3 Programming Examples . 23
2.4 Tips & Tricks . 24

2.4.1 Direct Access to External Images in Memory . 24
2.4.2 Unsupported Image Acquisition Devices . 24

3 Region Of Interest 25
3.1 Basic Concept . 25

3.1.1 Create Region . 25
3.1.2 Create ROI . 25
3.1.3 A First Example . 26

3.2 Extended Concept . 26
3.2.1 Segment Image(s) . 26
3.2.2 Draw Region . 26
3.2.3 Create Region . 27
3.2.4 Process Regions . 27
3.2.5 Align ROIs or Images . 27
3.2.6 Create ROI . 28
3.2.7 Visualize Results . 28

3.3 Programming Examples . 28

3.3.1 Processing inside a User Defined Region . 28
3.3.2 Interactive Partial Filtering of an Image . 29
3.3.3 Inspecting the Contours of a Tool . 30

3.4 Relation to Other Methods . 31
3.5 Tips & Tricks . 31

3.5.1 Reuse ROI . 31
3.5.2 Effect of ROI Shape on Speed Up . 31
3.5.3 Binary Images . 31

4 Blob Analysis 33
4.1 Basic Concept . 33

4.1.1 Acquire Image(s) . 33
4.1.2 Segment Image(s) . 34
4.1.3 Extract Features . 34
4.1.4 A First Example . 34

4.2 Extended Concept . 34
4.2.1 Use Region of Interest . 34
4.2.2 Align ROIs or Images . 34
4.2.3 Rectify Image(s) . 35
4.2.4 Preprocess Image(s) (Filtering) . 35
4.2.5 Extract Segmentation Parameters . 35
4.2.6 Segment Image(s) . 36
4.2.7 Process Regions . 36
4.2.8 Extract Features . 36
4.2.9 Transform Results Into World Coordinates . 36
4.2.10 Visualize Results . 36

4.3 Programming Examples . 36
4.3.1 Crystals . 37
4.3.2 Atoms . 37
4.3.3 Analyzing Particles . 38
4.3.4 Extracting Forest Features from Color Infrared Image . 39
4.3.5 Checking a Boundary for Fins . 40
4.3.6 Bonding Balls . 41
4.3.7 Surface Scratches . 41

4.4 Relation to Other Methods . 42
4.4.1 Methods that are Useful for Blob Analysis . 42
4.4.2 Methods that are Using Blob Analysis . 43
4.4.3 Alternatives to Blob Analysis . 43

4.5 Tips & Tricks . 43
4.5.1 Connected Components . 43
4.5.2 Speed Up . 43

4.6 Advanced Topics . 43
4.6.1 Line Scan Cameras . 43
4.6.2 High Accuracy . 44

5 1D Measuring 45
5.1 Basic Concept . 45

5.1.1 Acquire Image(s) . 45
5.1.2 Create Measure Object . 46
5.1.3 Measure . 46

5.2 Extended Concept . 46
5.2.1 Radiometrically Calibrate Image(s) . 46
5.2.2 Align ROIs or Images . 46
5.2.3 Rectify Image(s) . 46
5.2.4 Create Measure Object . 47
5.2.5 Transform Results Into World Coordinates . 47
5.2.6 Visualize Results . 47

5.3 Programming Examples . 48
5.3.1 Inspecting a Fuse . 48
5.3.2 Inspect Cast Part . 49

5.3.3 Inspecting an IC Using Fuzzy Measuring . 49
5.3.4 Measuring Leads of a Moving IC . 49
5.3.5 Inspect IC . 51

5.4 Relation to Other Methods . 52
5.4.1 Alternatives to 1D Measuring . 52

5.5 Tips & Tricks . 52
5.5.1 Suppress Clutter or Noise . 52
5.5.2 Reuse Measure Object . 52
5.5.3 Use an Absolute Gray Value Threshold . 53

5.6 Advanced Topics . 53
5.6.1 Fuzzy Measuring . 53
5.6.2 Evaluation of Gray Values . 53

6 Edge Extraction (Pixel-Precise) 55
6.1 Edge Extraction Using Edge Filters . 55

6.1.1 Basic Concept . 55
6.1.2 A First Example . 56
6.1.3 Extended Concept . 56
6.1.4 Programming Examples . 58
6.1.5 Relation to Other Methods . 60
6.1.6 Tips & Tricks . 60

6.2 Deep-Learning-Based Edge Extraction . 60
6.2.1 Concept . 60
6.2.2 Programming Examples . 61

7 Edge Extraction (Subpixel-Precise) 63
7.1 Basic Concept . 63

7.1.1 Acquire Image(s) . 63
7.1.2 Extract Edges Or Lines . 63
7.1.3 A First Example . 64

7.2 Extended Concept . 64
7.2.1 Radiometrically Calibrate Image(s) . 64
7.2.2 Use Region Of Interest . 64
7.2.3 Extract Edges Or Lines . 65
7.2.4 Determine Contour Attributes . 65
7.2.5 Process XLD Contours . 66
7.2.6 Transform Results Into World Coordinates . 66
7.2.7 Visualize Results . 66

7.3 Programming Examples . 66
7.3.1 Measuring the Diameter of Drilled Holes . 66
7.3.2 Angiography . 67

7.4 Relation to Other Methods . 68
7.4.1 Alternatives to Edge Extraction (Subpixel-Precise) . 68

8 Structured Light 69
8.1 Basic Concept . 70

8.1.1 Create Structured Light Model . 71
8.1.2 Set Model Parameters . 71
8.1.3 Generate Pattern Images . 71
8.1.4 Acquire Images . 71
8.1.5 Decode Images . 71
8.1.6 Get Results . 71

8.2 Programming Examples . 71
8.2.1 Inspecting a Tap Collar . 71
8.2.2 Inspecting a Partially Specular Surface . 73

8.3 Tips & Tricks . 75
8.3.1 Set Up the Measurement . 75
8.3.2 Check the Decoding Results . 76
8.3.3 Synchronize the Camera with the Pattern Source . 77
8.3.4 Speed Up the Acquisition Process . 78

9 Contour Processing 79
9.1 Basic Concept . 79

9.1.1 Create XLD Contours . 79
9.1.2 Process XLD Contours . 80
9.1.3 Perform Fitting . 80
9.1.4 Extract Features . 81
9.1.5 A First Example . 81

9.2 Extended Concept . 81
9.2.1 Create XLD Contours . 81
9.2.2 Process XLD Contours . 82
9.2.3 Perform Fitting . 83
9.2.4 Transform Results Into World Coordinates . 83
9.2.5 Extract Features . 83
9.2.6 Convert And Access XLD Contours . 83
9.2.7 Visualize Results . 84

9.3 Programming Examples . 84
9.3.1 Measuring Lines and Arcs . 84
9.3.2 Close Gaps in a Contour . 85
9.3.3 Calculate Pointwise Distance between XLD Contours 86
9.3.4 Extract Roads . 87

9.4 Relation to Other Methods . 88
9.4.1 Alternatives to Contour Processing . 88

9.5 Advanced Topics . 88
9.5.1 Line Scan Cameras . 88

10 2D Matching 89
10.1 Basic Concept . 90

10.1.1 Acquire Image(s) . 90
10.1.2 Create (Train) Model . 90
10.1.3 Find Model . 91

10.2 Programming Examples . 91
10.2.1 A First Example . 91
10.2.2 Correlation-based Matching: Find Label in Texture . 92
10.2.3 Shape-based Matching: Align the Image to Read Text 93
10.2.4 Local Deformable Matching: Find Deformed Logo . 94
10.2.5 Perspective Deformable Matching: Locate Road Signs 95
10.2.6 Descriptor-based Matching: Locate Brochure Pages . 97

10.3 Relation to Other Methods . 98
10.3.1 Methods that are Using Matching . 98
10.3.2 Alternatives to Matching . 99

11 3D Matching 101
11.1 Basic Concept . 101

11.1.1 Access 3D Object Model . 102
11.1.2 Create Approach-Specific 3D Model . 102
11.1.3 Acquire Search Data . 103
11.1.4 Find Approach-Specific 3D Model . 103
11.1.5 A First Example . 103

11.2 Extended Concept . 104
11.2.1 Inspect 3D Object Model . 105
11.2.2 Inspect Approach-Specific 3D Model . 105
11.2.3 Re-use Approach-Specific 3D Model . 105
11.2.4 Use Region Of Interest . 105
11.2.5 Visualize Results . 105

11.3 Programming Examples . 106
11.3.1 Recognize 3D Clamps and Their Poses in Images . 106
11.3.2 Recognize Pipe Joints and Their Poses in a 3D Scene . 108

11.4 Relation to Other Methods . 110
11.4.1 Alternatives to 3D Matching . 110

12 Variation Model 111
12.1 Basic Concept . 111

12.1.1 Acquire Image(s) . 111
12.1.2 Create Variation Model . 112
12.1.3 Align ROIs or Images . 112
12.1.4 Train Variation Model . 112
12.1.5 Prepare Variation Model . 112
12.1.6 Compare Variation Model . 112
12.1.7 A First Example . 112

12.2 Extended Concept . 114
12.2.1 Check Model Quality . 114
12.2.2 Clear Training Data . 115
12.2.3 Visualize Results . 115

12.3 Programming Examples . 115
12.3.1 Inspect a Printed Logo Using a Single Reference Image 115
12.3.2 Inspect a Printed Logo under Varying Illumination . 117

13 Classification 119
13.1 Basic Concept . 119

13.1.1 Acquire Image(s) . 119
13.1.2 Create Classifier . 120
13.1.3 Train Classifier . 121
13.1.4 Classify Data . 121
13.1.5 A First Example . 121

13.2 Extended Concept . 122
13.2.1 Train Classifier . 122
13.2.2 Re-use Training Samples . 123
13.2.3 Re-use Classifier . 123
13.2.4 Evaluate Classifier . 124
13.2.5 Visualize Results . 124

13.3 Programming Examples . 124
13.3.1 Inspection of Plastic Meshes via Texture Classification 124
13.3.2 Classification with Overlapping Classes . 126

13.4 Relation to Other Methods . 128
13.4.1 Methods that are Useful for Classification . 128
13.4.2 Methods that are Using Classification . 129
13.4.3 Alternatives to Classification . 129

13.5 Tips & Tricks . 129
13.5.1 OCR for General Classification . 129

13.6 Advanced Topics . 129
13.6.1 Selection of Training Samples . 129

14 Color Processing 131
14.1 Basic Concept . 131

14.1.1 Acquire Image(s) . 131
14.1.2 Decompose Channels . 131
14.1.3 Process Image (Channels) . 132
14.1.4 A First Example . 132

14.2 Extended Concept . 132
14.2.1 Demosaick Bayer Pattern . 132
14.2.2 Transform Color Space . 133
14.2.3 Train Colors . 133
14.2.4 Use Region Of Interest . 134
14.2.5 Classify Colors . 134
14.2.6 Compose Channels . 134
14.2.7 Visualize Results . 134

14.3 Programming Examples . 134
14.3.1 Robust Color Extraction . 134
14.3.2 Sorting Fuses . 135
14.3.3 Completeness Check of Colored Game Pieces . 136

14.3.4 Inspect Power Supply Cables . 138
14.3.5 Locating Board Components by Color . 139

14.4 Tips & Tricks . 141
14.4.1 Speed Up . 141

14.5 Advanced Topics . 141
14.5.1 Color Edge Extraction . 141
14.5.2 Color Line Extraction . 141

15 Texture Analysis 143
15.1 Basic Concept . 144

15.1.1 Acquire Image(s) . 144
15.1.2 Apply Texture Filter . 144
15.1.3 Compute Features . 144
15.1.4 A First Example . 144

15.2 Extended Concept . 145
15.2.1 Rectify Image(s) . 145
15.2.2 Scale Down Image(s) . 145
15.2.3 Use Region of Interest . 145
15.2.4 Align ROIs or Images . 146
15.2.5 Apply Texture Filter . 146
15.2.6 Compute Features . 146
15.2.7 Visualize Results . 147
15.2.8 Use Results . 147

15.3 Programming Examples . 147
15.3.1 Detect Defects in a Texture with Novelty Detection . 147
15.3.2 Detect Defects in a Web Using Dynamic Thresholding 148
15.3.3 Classification of Different Types of Wood . 150

15.4 Relation to Other Methods . 152
15.4.1 Methods that are Using Texture Analysis . 152

15.5 Advanced Topics . 152
15.5.1 Fast Fourier Transform (FFT) . 152
15.5.2 Texture Analysis in Color Images . 152

15.6 More Information About Texture Features . 153
15.6.1 Entropy and Anisotropy (entropy_gray) . 153
15.6.2 Cooccurrence Matrix (gen_cooc_matrix) . 154
15.6.3 Features of the Cooccurrence Matrix . 155

15.7 More Information About Texture Filtering . 158
15.7.1 The Laws Filter (texture_laws) . 158

16 Bar Code 159
16.1 Basic Concept . 159

16.1.1 Acquire Image(s) . 159
16.1.2 Create Bar Code Model . 159
16.1.3 Read Bar Code(s) . 159
16.1.4 A First Example . 160

16.2 Extended Concept . 160
16.2.1 Use Region Of Interest . 160
16.2.2 Preprocess Image(s) . 160
16.2.3 Rectify Image(s) . 161
16.2.4 Create Bar Code Model . 161
16.2.5 Adjust Bar Code Model . 161
16.2.6 Read Bar Code(s) . 163
16.2.7 Check Print Quality . 166
16.2.8 Visualize Results . 167

16.3 Programming Examples . 168
16.3.1 How to Read Difficult Barcodes . 168
16.3.2 Reading a Bar Code on a CD . 171
16.3.3 Checking Bar Code Print Quality . 172

16.4 Relation to Other Methods . 172
16.4.1 Alternatives to Bar Code . 172

16.5 Advanced Topics . 173
16.5.1 Use Timeout . 173

17 Data Code 175
17.1 Basic Concept . 175

17.1.1 Acquire Image(s) . 175
17.1.2 Create Data Code Model . 175
17.1.3 Read Data Code(s) . 176
17.1.4 A First Example . 176

17.2 Extended Concept . 176
17.2.1 Acquire Image(s) . 176
17.2.2 Rectify Image(s) . 177
17.2.3 Create Data Code Model . 177
17.2.4 Optimize Model . 178
17.2.5 Train Model . 178
17.2.6 Use Region Of Interest . 178
17.2.7 Read Data Code(s) . 178
17.2.8 Inspect Data Code(s) . 178
17.2.9 Check Print Quality . 179
17.2.10 Visualize Results . 179

17.3 Programming Examples . 179
17.3.1 Training a Data Code Model . 179
17.3.2 Reading 2D Data Codes on Chips . 180

17.4 Advanced Topics . 181
17.4.1 Use Timeout . 181

18 OCR (character classification) 183
18.1 Basic Concept . 184

18.1.1 Acquire Image(s) . 184
18.1.2 Segment Image(s) . 184
18.1.3 Train OCR . 184
18.1.4 Read Symbol . 184
18.1.5 A First Example . 184

18.2 Extended Concept . 185
18.2.1 Use Region of Interest . 185
18.2.2 Align ROIs or Images . 186
18.2.3 Rectify Image(s) . 186
18.2.4 Preprocess Image(s) (Filtering) . 186
18.2.5 Extract Segmentation Parameters . 187
18.2.6 Segment Image(s) . 187
18.2.7 Train OCR . 188
18.2.8 Read Symbol . 189
18.2.9 Visualize Results . 190

18.3 Programming Examples . 190
18.3.1 Generating a Training File . 190
18.3.2 Creating and Training an OCR Classifier . 191
18.3.3 Reading Numbers . 193
18.3.4 "Best Before" Date . 193
18.3.5 Reading Engraved Text . 194
18.3.6 Reading Forms . 194
18.3.7 Segment and Select Characters . 196
18.3.8 Syntactic and Lexicon-Based Auto-Correction of OCR Results 198

18.4 Relation to Other Methods . 200
18.4.1 Alternatives to OCR . 200

18.5 Tips & Tricks . 200
18.5.1 Composed Symbols . 200

18.6 Advanced Topics . 200
18.6.1 Line Scan Cameras . 200
18.6.2 Circular Prints . 200
18.6.3 OCR Features . 200

18.7 Pretrained OCR Fonts . 201
18.7.1 Pretrained Fonts with Regularized Weights and Rejection Class 201
18.7.2 Nomenclature for the Ready-to-Use OCR Fonts . 201
18.7.3 Ready-to-Use OCR Font ’Document’ . 201
18.7.4 Ready-to-Use OCR Font ’DotPrint’ . 202
18.7.5 Ready-to-Use OCR Font ’HandWritten_0-9’ . 202
18.7.6 Ready-to-Use OCR Font ’Industrial’ . 203
18.7.7 Ready-to-Use OCR Font ’OCR-A’ . 203
18.7.8 Ready-to-Use OCR Font ’OCR-B’ . 203
18.7.9 Ready-to-Use OCR Font ’Pharma’ . 205
18.7.10 Ready-to-Use OCR Font ’SEMI’ . 206
18.7.11 Ready-to-Use OCR Font ’Universal’ . 206

19 OCR (Deep OCR) 209
19.1 Basic Concept . 209

19.1.1 Offline Phase . 209
19.1.2 Online Phase . 210

19.2 Retrain Model (Recognition & Detection Component) . 210
19.3 Programming Examples . 211

19.3.1 Locate and Recognize Text . 211
19.3.2 Retrain Recognition Component . 211
19.3.3 Retrain Detection Component . 212

19.4 Large images . 212
19.5 Relation to Other Methods . 213

20 Stereo Vision 215
20.1 Basic Concept . 215

20.1.1 Acquire Calibration Image(s) . 216
20.1.2 Calibrate Stereo Camera System . 216
20.1.3 Acquire Stereo Image(s) . 216
20.1.4 Rectify Image(s) . 217
20.1.5 Reconstruct 3D Information . 217

20.2 Extended Concept . 217
20.2.1 Use Region Of Interest . 217
20.2.2 Transform Results Into World Coordinates . 217
20.2.3 Visualize Results . 217

20.3 Programming Examples . 218
20.3.1 Segment the Components of a Board With Binocular Stereo 218
20.3.2 Reconstruct the Surface of Pipe Joints With Multi-View Stereo 220

20.4 Relation to Other Methods . 221
20.4.1 Methods that are Using Stereo Vision . 221

20.5 Tips & Tricks . 221
20.5.1 Speed Up . 221

20.6 Advanced Topics . 221
20.6.1 High Accuracy . 221

21 Visualization 223
21.1 Basic Concept . 223

21.1.1 Handling Graphics Windows . 223
21.1.2 Displaying . 223
21.1.3 A First Example . 224

21.2 Extended Concept . 224
21.2.1 Handling Graphics Windows . 224
21.2.2 Displaying . 225
21.2.3 Mouse Interaction . 225

21.3 Programming Examples . 226
21.3.1 Displaying HALCON data structures . 226

21.4 Tips & Tricks . 229
21.4.1 Saving Window Content . 229
21.4.2 Execution Time . 229

21.5 Advanced Topics . 230
21.5.1 Programming Environments . 230
21.5.2 Flicker-Free Visualization . 230
21.5.3 Visualization Quality for Regions when Zooming . 230
21.5.4 Remote Visualization . 231
21.5.5 Programmed Visualization . 231

22 Compute Devices 233
22.1 Basic Concept . 233

22.1.1 Query Available Compute Devices . 234
22.1.2 Open Compute Device . 234
22.1.3 Initialize Compute Device . 234
22.1.4 Activate Compute Device . 234
22.1.5 Perform Calculations on Compute Device . 234
22.1.6 Deactivate Compute Device . 234
22.1.7 A First Example . 234

22.2 Extended Concept . 235
22.2.1 Get Information about Compute Device(s) . 235
22.2.2 Open Compute Device . 235
22.2.3 View/Edit Compute Device Parameters . 236
22.2.4 Initialize Compute Device . 236
22.2.5 Activate Compute Device . 236
22.2.6 Perform Calculations on Compute Device . 236
22.2.7 Deactivate Compute Device . 236
22.2.8 Release Compute Device . 236

22.3 Programming Example . 236
22.3.1 How to Use Compute Devices With HALCON . 237

22.4 Tips and Tricks . 238
22.4.1 Speedup . 238
22.4.2 Measuring Execution Times . 240
22.4.3 Exchanging or Simulating Operators that do not support Compute Devices 241
22.4.4 Limitations . 244
22.4.5 Multithreading . 244

22.5 Technical Details . 245
22.6 Operators Supporting Compute Devices . 245

23 I/O Devices 247
23.1 Basic Concept . 247

23.1.1 Open Connection . 247
23.1.2 Read/Write Values . 247
23.1.3 Close Image Acquisition Device . 247
23.1.4 A First Example . 248

23.2 Extended Concept . 248
23.2.1 Control I/O Device Interface . 248
23.2.2 Open Connection . 248
23.2.3 Set Parameters . 249

23.3 Programming Examples . 249
23.4 Tips & Tricks . 249

23.4.1 Unsupported I/O Devices . 249

Index 251

Guide to HALCON Methods 13

Chapter 1

Guide to HALCON Methods

This manual introduces you to important machine vision methods. To guide you from your specific application to
the sections of the documentation to read, this section lists common application areas and the methods used for
them.

Generally, a lot of applications use the following methods:

• Image Acquisition on page 21 for accessing images via an image acquisition device or via file.

• Visualization on page 223 for the visualization of, e.g., artificially created images or results of an image
processing task.

• Region of interest on page 25 for reducing the search space for a following image processing task.

• Morphology (Reference Manual, chapter “Morphology”), e.g., for the elimination of small gaps or protru-
sions from regions or from structures in gray value images.

Other methods are more specific and thus are suited for specific application areas. Additionally, some application
areas are part of another application area. To make the relations more obvious, for the following application areas
the corresponding methods and related application areas are listed:

• Color Inspection (page 14)

• Completeness Check (page 14)

• Identification (page 14)

• Measuring and Comparison 2D (page 14)

• Measuring and Comparison 3D (page 15)

• Object Recognition 2D (page 15)

• Object Recognition 3D (page 15)

• Position Recognition 2D (page 16)

• Position Recognition 3D (page 16)

• Print Inspection (page 16)

• Quality Inspection (page 17)

• Robot Vision (page 17)

• Security System (page 17)

• Surface Inspection (page 17)

• Texture Inspection (page 18)

To speed up some applications, compute devices can be used. When and how to use compute devices is explained
in the chapter Compute Devices on page 233.

G
ui

de
to

M
et

ho
ds

14 Guide to HALCON Methods

1.1 Color Inspection

For color inspection, see the descriptions for Color Processing on page 131.

1.2 Completeness Check

Completeness checks can be realized by different means. Common approaches are:

• Object and position recognition 2D/3D (see page 15 ff), which is suitable, e.g., when inspecting objects on
an assembly line.

• Variation Model on page 111, which compares images containing similar objects and returns the difference
between them considering a certain tolerance at the object’s border.

1.3 Identification

Dependent on the symbols or objects you have to identify, the following methods are suitable:

• Identify symbols or characters

– Bar Code on page 159

– Data Code on page 175

– OCR on page 183

• Identify general objects

– Object and position recognition 2D/3D (see page 15 ff)

1.4 Measuring and Comparison 2D

For measuring 2D features in images, several approaches are available. In the Solution Guide III-B, section 3.1 on
page 27, a graph leads you from the specific features you want to measure and the appearance of the objects in the
image to the suitable measuring approach. Generally, the following approaches are common:

• Blob Analysis on page 33 for objects that consist of regions of similar gray value, color, or texture.

• Contour Processing on page 79 for objects that are represented by clear-cut edges. The contours can be
obtained by different means:

– Edge Extraction on page 55 if pixel precision is sufficient.

– Edge and Line Extraction on page 63 if subpixel precision is needed.

• Matching on page 89 for objects that can be represented by a template. Matching comprises different ap-
proaches. For detailed information about matching see the Solution Guide II-B.

• 1D Measuring on page 45 if you want to obtain the positions, distances, or angles of edges that are measured
along a line or an arc. More detailed information can be found in the Solution Guide III-A.

1.5 Measuring and Comparison 3D 15

1.5 Measuring and Comparison 3D

For measuring in 3D, the following approaches are available:

• The approaches used for measuring and comparison 2D (see page 14) in combination with a camera cali-
bration (see Solution Guide III-C, section 3.2 on page 61) for measuring objects that are viewed by a single
camera and that lie in a single plane.

• Pose estimation (Solution Guide III-C, chapter 4 on page 91) for the estimation of the poses of 3D objects
that are viewed by a single camera and for which knowledge about their 3D model (e.g., known points,
known circular or rectangular shape) is available.

3D reconstruction is an important subcategory of 3D measuring and comprises the following methods:

• Stereo for measuring in images obtained by a binocular or multi-view stereo system on page 215. Further
information can be found in the Solution Guide III-C, chapter 5 on page 117.

• Laser triangulation using the sheet-of-light technique (Solution Guide III-C, chapter 6 on page 147) for
measuring height profiles of an object by triangulating the camera view with a projected light line.

• Depth from focus (Solution Guide III-C, chapter 7 on page 163) for getting depth information from a se-
quence of images of the same object but with different focus positions.

• Photometric Stereo (Reference Manual, chapter “3D Reconstruction . Photometric Stereo”) for getting
information about an object’s shape because of its shading behavior (e.g., by the operator photomet-

ric_stereo).

1.6 Object Recognition 2D

For finding specific objects in images, various methods are available. Common approaches comprise:

• Blob Analysis on page 33 for objects that are represented by regions of similar gray value, color, or texture.

• Contour Processing on page 79 for objects that are represented by clear-cut edges. The contours can be
obtained by different means:

– Edge Extraction on page 55 if pixel precision is sufficient.
– Edge and Line Extraction on page 63 if subpixel precision is needed.

• Matching on page 89 for objects that can be represented by a template. Matching comprises different ap-
proaches. For detailed information about matching see the Solution Guide II-B.

• Classification on page 119 for the recognition of objects by a classification using, e.g., Gaussian mixture
models, neural nets, or support vector machines. For more detailed information about classification see the
Solution Guide II-D.

• Color Processing on page 131 for the recognition of objects that can be separated from the background by
their color.

• Texture Analysis on page 143 for the recognition of objects that can be separated from the background by
their specific texture.

• Movement detection (see section 1.13 on page 17) for the recognition of moving objects.

1.7 Object Recognition 3D

For the recognition of 3D objects that are described by a 3D Computer Aided Design (CAD) model, see the
descriptions for 3D Matching on page 101. For the recognition of planar objects that can be oriented arbitrarily
in the 3D space, see the descriptions for perspective, deformable matching and descriptor-based matching in the
chapter about Matching on page 89 for the uncalibrated case and in the Solution Guide III-C, chapter 4 on page 91
for the calibrated case.

G
ui

de
to

M
et

ho
ds

16 Guide to HALCON Methods

1.8 Position Recognition 2D

In parts, the approaches for measuring 2D features are suitable to get the position of objects. In the Solution Guide
III-B, section 3.1 on page 27, a graph leads you from several specific features, amongst others the object position,
and the appearance of the objects in the image to the suitable approach. For position recognition, in particular the
following approaches are common:

• Blob Analysis on page 33 for objects that consist of regions of similar gray value, color, or texture.

• Contour Processing on page 79 for objects that are represented by clear-cut edges. The contours can be
obtained by different means:

– Edge Extraction on page 55 if pixel precision is sufficient.

– Edge and Line Extraction on page 63 if subpixel precision is needed.

• Matching on page 89 for objects that can be represented by a template. Matching comprises different ap-
proaches. For detailed information about matching see the Solution Guide II-B.

• 1D Measuring on page 45 if you want to obtain the positions of edges that are measured along a line or an
arc. More detailed information can be found in the Solution Guide III-A.

1.9 Position Recognition 3D

For the position recognition of 3D objects, the following approaches are available:

• The approaches used for measuring and comparison 2D (see page 14) in combination with a camera cali-
bration (see Solution Guide III-C, section 3.2 on page 61) for measuring objects that are viewed by a single
camera, and which lie in a single plane.

• Pose estimation (Solution Guide III-C, chapter 4 on page 91) for the estimation of the poses of 3D objects
that are viewed by a single camera and for which knowledge about their 3D model (e.g., known points,
known circular or rectangular shape) is available.

• Stereo for measuring positions in images obtained by a binocular stereo system on page 215 or a multi-view
stereo system. Further information can be found in the Solution Guide III-C, chapter 5 on page 117.

• 3D matching on page 101 for objects that are searched for based on a 3D Computer Aided Design (CAD)
model.

1.10 Print Inspection

For print inspection, the suitable method depends on the type of print you need to inspect:

• Optical character verification (Reference Manual, chapter “Inspection . OCV”) for the verification of char-
acters.

• Data Code on page 175 for inspecting the quality of a printed 2D data code symbol. Further information can
be found in the Solution Guide II-C, section 6 on page 45.

• Variation Model on page 111, which compares images containing similar objects and returns the difference
between them considering a certain tolerance at the object’s border.

1.11 Quality Inspection 17

1.11 Quality Inspection

How to inspect the quality of an object depends on the features describing the quality. The following application
areas and the methods used by them can be applied for quality inspection:

• Surface inspection (see page 17) if, e.g., scratches in an object’s surface have to be detected.

• Completeness check (see page 14) if you need to check an object for missing parts.

• Measuring and comparison 2D/3D (see page 14 ff) if an object has to fulfill certain requirements related to
its area, position, orientation, dimension, or number of parts.

Additionally, Classification on page 119 can be used to check the color or texture of objects. For more detailed
information about classification see the Solution Guide II-D.

1.12 Robot Vision

For robot vision, you can combine the approaches for object and position recognition 2D/3D (see page 15 ff) with
the hand-eye calibration described in the Solution Guide III-C, chapter 8 on page 175.

1.13 Security System

For a sequence analysis or movement detection you can use, e.g., one of the following approaches:

• Blob Analysis on page 33, e.g., by using the operator dyn_threshold to obtain the difference between two
images and thus detect moving objects. The approach is fast, but detects objects only as long as they are
moving.

• Background estimator (Reference Manual, chapter “Tools . Background Estimator”) for the recognition of
moving objects even if they stop temporarily. It adapts to global changes concerning, e.g., illumination.

• Optical flow (Reference Manual, chapter “Filters . Optical Flow”) for the recognition of moving objects
even if they stop temporarily. Because of complex calculations, it is slower than the other approaches, but
additionally returns the velocity for each object.

• Scene flow (Reference Manual, chapter “Filters . Scene Flow”) for the recognition of moving objects in 3D
even if they stop temporarily. In contrast to the optical flow, which returns the information about moving
objects only in 2D, the scene flow calculates the position and motion in 3D. Because of complex calculations,
it is even slower than the optical flow, but additionally returns 3D information.

• Kalman filter (Reference Manual, chapter “Tools . Kalman Filter”) can be applied after the recognition of
moving objects to predict the future positions of objects.

For the recognition of, e.g., irises or faces, Classification on page 119 may be suitable. For more detailed informa-
tion about classification see the Solution Guide II-D.

Examples solving different tasks relevant for security systems can be found via the Open Example dialog inside
HDevelop for the category Industry/Surveillance and Security.

1.14 Surface Inspection

For surface inspection, several approaches are available:

• Via comparison with a reference image

G
ui

de
to

M
et

ho
ds

18 Guide to HALCON Methods

– Variation Model on page 111, which compares images containing similar objects and returns the differ-
ence between them. This is suited especially if you need to detect irregularities that are placed inside
the object area, whereas small irregularities at the object’s border can be tolerated.

• Via comparison with a reference pattern or color

– Texture Analysis on page 143

– Color Processing on page 131

– Classification on page 119 (for more detailed information about classification see the Solution Guide
II-D)

• Via defect description for uniformly structured surfaces

– Blob Analysis on page 33 for objects that consist of regions of similar gray value, color, or texture.

– Contour Processing on page 79 for objects that are represented by clear-cut edges. The contours can
be obtained by an Edge Extraction on page 55 if pixel precision is sufficient, or by an Edge and Line
Extraction on page 63 if subpixel precision is needed.

If a single image is not suited to cover the object to inspect, several approaches exist to combine images after their
acquisition:

• Calibrated mosaicking (Solution Guide III-C, chapter 9 on page 191) for a high-precision mosaicking of a
discrete number of overlapping images obtained by two ore more cameras.

• Uncalibrated mosaicking (Solution Guide III-C, chapter 10 on page 205) for a less precise mosaicking of a
discrete number of overlapping images obtained as an image sequence.

• Combination of lines obtained by a line scan camera to so-called pages (Solution Guide II-A, section 6.6 on
page 39) for inspecting continuous material on an assembly line.

1.15 Texture Inspection

Common approaches for texture inspection are:

• Fast Fourier Transformation (see section 15.5 on page 152)

• Classification on page 119 (for more detailed information about classification see the Solution Guide II-D)

• Texture Analysis on page 143

1.16 Text Processing

This chapter describes how HALCON processes text. Although HALCON is mainly an image processing library,
there is also some text processing in HALCON as the following examples demonstrate:

• Passing string parameters such as file names or data code contents to and from HALCON operators via
programming language interfaces.

• Files that are opened, read or written with HALCON operators.

• Strings that are transmitted via sockets.

• Reading characters with the help of OCR classifiers, which make use of user defined class names.

• String processing with the help of HALCON’s tuple operators, e.g., by means of regular expressions.

1.16 Text Processing 19

1.16.1 String Encoding

All proprietary HALCON files, i.e. files whose format is controlled by HALCON, encode strings in UTF-8 in order
to allow exchanging these files between different countries, locales, and operating systems. This affects mainly
HALCON tuples as well as OCR and OCV classifiers, training data, and sample identification models, which all
contain user defined class or character names. This is also true when the data is serialized. Note, that the encoding
affects only strings that contain special characters, i.e. characters that are not plain ASCII.

For backwards compatibility, the operator set_system offers two new options. They can be used to control the
encoding when old and new HALCON versions have to be used in parallel.

G
ui

de
to

M
et

ho
ds

20 Guide to HALCON Methods

Image Acquisition 21

Chapter 2

Image Acquisition

Obviously, the acquisition of images is a task that must be solved in all machine vision applications. Unfortunately,
this task mainly consists of interacting with special, non-standardized hardware in the form of the image acquisi-
tion device, e.g., a frame grabber board or an IEEE 1394 camera. To let you concentrate on the actual machine
vision problem, HALCON provides you with interfaces performing this interaction for a large number of image
acquisition devices (see http://www.mvtec.com/products/interfaces for the latest information).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines of code, i.e., a few
operator calls. What’s more, this simplicity is not achieved at the cost of limiting the available functionality: Using
HALCON, you can acquire images from various configurations of acquisition devices and cameras in different
timing modes.

Besides acquiring images from cameras, HALCON also allows you to input images that were stored in files (sup-
ported formats: BMP, TIFF, GIF, JPEG, PNG, PNM, PCX, XWD). Of course, you can also store acquired images
in files.

2.1 Basic Concept

Acquiring images with HALCON basically consists of three steps. Reading images from files is even simpler: It
consists of a single call to the operator read_image.

Close Image Acquisition
Device

Acquire Image(s)

Open Image Acquisition
Device

2.1.1 Open Image Acquisition Device

If you want to acquire images from a frame grabber board or an image acquisition device like an IEEE 1394
camera, the first step is to connect to this device. HALCON relieves you of all device-specific details; all you need
to do is to call the operator open_framegrabber, specifying the name of the corresponding image acquisition
interface.

There is also a "virtual" image acquisition interface called File. As its name suggests, this "frame grabber" reads
images from files, and also from so-called image sequence files. The latter are HALCON-specific files, typically

Im
ag

e
A

cq
ui

si
tio

n

http://www.mvtec.com/products/interfaces

22 Image Acquisition

with the extension .seq; they contain a list of image file names, separated by new lines (you can create it easily
using a text editor). If you connect to such a sequence, subsequent calls to grab_image return the images in the
sequence specified in the file. Alternatively, you can also read all images from a specific directory. Then, you do
not have to create a sequence file, but simply specify the directory name instead of the sequence file as value for the
parameter ’CameraType’. Now, subsequent calls to grab_image return the images found in the specified image
directory. Both approaches are useful if you want to test your application with a sequence of image files and later
switch to a real image acquisition device.

2.1.2 Acquire Image(s)

Having connected to the device, you acquire images by simply calling grab_image.

To load an image from disk, you use read_image. Images are searched for in the current directory and in the
directories specified in the environment variable HALCONIMAGES.

2.1.3 Close Image Acquisition Device

At the end of the application, you close the connection to the image acquisition device to free its resources with
the operator close_framegrabber.

2.1.4 A First Example

As already remarked, acquiring images from file corresponds to a single operator call:

read_image (Image, 'particle')

The following code processes images read from an image sequence file:

SequenceName := 'pendulum/pendulum.seq'
open_framegrabber ('File', -1, -1, -1, -1, -1, -1, 'default', -1, 'default', \

-1, 'default', SequenceName, 'default', -1, -1, \

AcqHandle)

while (ImageNum <= MaxImageNum)

grab_image (Image, AcqHandle)

... process image ...

ImageNum := ImageNum + 1

endwhile

2.2 Extended Concept

In real applications, it is typically not enough to tell the camera to acquire an image; instead, it may be important
that images are acquired at the correct moment or rate, and that the camera and the image acquisition interface are
configured suitably. Therefore, HALCON allows to further parameterize the acquisition process. In HDevelop,
an assistant is provided via the menu item Assistants > Image Acquisition that assists you when selecting
your image source, adjusting the parameters, and generating suitable code.

2.2.1 Open Image Acquisition Device

When connecting to your image acquisition device with open_framegrabber, the main parameter is the name of
the corresponding HALCON image acquisition interface. As a result, you obtain a so-called handle, with which
you can access the device later, e.g., to acquire images with grab_image or grab_image_async.

With other parameters of open_framegrabber you can describe the configuration of image acquisition device(s)
and camera(s), which is necessary when using more complex configurations, e.g., multiple cameras connected to
different ports on different frame grabber boards. Further parameters allow you to specify the desired image format

2.3 Programming Examples 23

Close Image Acquisition
Device

Acquire Image(s)

Set Parameters

Open Image Acquisition
Device

(size, resolution, pixel type, color space). For most of these parameters there are default values that are used if you
specify the values ’default’ (string parameters) or -1 (numeric parameters).

With the operator info_framegrabber you can query information like the version number of the interface or the
available boards, port numbers, and camera types.

Detailed information about the parameters of open_framegrabber can be found in the Solution Guide II-A (con-
figuring the connection: section 3 on page 11; configuring the acquired image: section 4 on page 17).

2.2.2 Set Parameters

As described above, you already set parameters when connecting to the image acquisition device with
open_framegrabber. These parameters (configuration of image_acquisition device(s) / camera(s) and image
size etc.) are the so-called general parameters, because they are common to almost all image acquisition inter-
faces. However, image acquisition devices differ widely regarding the provided functionality, leading to many
more special parameters. These parameters can be customized with the operator set_framegrabber_param.

With the operator get_framegrabber_param you can query the current values of the common and special pa-
rameters.

Detailed information about setting parameters can be found in the Solution Guide II-A in section 4 on page 17.

2.2.3 Acquire Image(s)

Actually, in a typical machine vision application you will not use the operator grab_image to acquire images,
but grab_image_async. The difference between these two operators is the following: If you acquire and process
images in a loop, grab_image always requests the acquisition of a new image and then blocks the program until
the acquisition has finished. Then, the image is processed, and afterwards, the program waits for the next image.
When using grab_image_async, in contrast, images are acquired and processed in parallel: While an image
is processed, the next image is already being acquired. This, of course, leads to a significant speedup of the
applications.

HALCON offers many more modes of acquiring images, e.g., triggering the acquisition by external signals or ac-
quiring images simultaneously from multiple cameras. Detailed information about the various modes of acquiring
images can be found in the Solution Guide II-A in section 5 on page 21.

2.3 Programming Examples

Example programs for all provided image acquisition interfaces can be downloaded via the “MVTec Software
Manager” (SOM) or at http://www.mvtec.com/products/interfaces. Further examples are described in
the Solution Guide II-A.

Im
ag

e
A

cq
ui

si
tio

n

http://www.mvtec.com/products/interfaces

24 Image Acquisition

2.4 Tips & Tricks

2.4.1 Direct Access to External Images in Memory

You can also pass externally created images, i.e., the raw image matrix in the computer’s memory, to HALCON
using the operators gen_image1, gen_image3, gen_image1_extern or gen_image3_extern. For an example
see the Solution Guide II-A, section 6.2 on page 34.

2.4.2 Unsupported Image Acquisition Devices

If you want to use an image acquisition device that is currently not supported by HALCON, i.e., for which no
HALCON image acquisition interface exists, you can create your own interface. A description how to create and
integrate an image acquisition interface as well as a template source code that can be used as the basis of an inte-
gration can be downloaded from MVTec’s web server under http://www.mvtec.com/products/interfaces.

http://www.mvtec.com/products/interfaces

Region Of Interest 25

Chapter 3

Region Of Interest

The concept of regions of interest (ROIs) is essential for machine vision in general and for HALCON in particular.
The aim is to focus the processing on a specific part of the image. This approach combines region information with
the image matrix: Only the image part corresponding to the region remains relevant, which reduces the number of
pixels to be processed.

The advantages of using ROIs are manifold. First of all, it is a very good method to speed up a process because
fewer pixels need to be processed. Furthermore, it focuses processing, e.g., a gray value feature is usually calcu-
lated only for a part of the image. Finally, ROIs are used to define templates, e.g., for matching. HALCON allows
to make full use of the concept of ROIs because it enables using arbitrary shapes for the regions. This means that
you are not limited to standard shapes like rectangles or polygons, but can really use any form - the best one to
solve a given problem.

3.1 Basic Concept

Making use of ROIs is split into two simple parts: creating regions and combining them with the image.

Create ROI

Create Region

3.1.1 Create Region

HALCON provides many ways to create regions, which can then be used as ROIs. The traditional way is to
generate standard shapes like circles, ellipses, rectangles, or polygons. In addition, regions can be derived by
converting them from other data types like XLD, by segmenting an image, or by user interaction.

3.1.2 Create ROI

By combining a region with an image, the region assumes the role of an ROI, i.e., it defines which part of the
image must be processed. In HALCON, the ROI is also called the domain of the image. This term comes from
mathematics where an image can be treated as a function that maps coordinates to gray values. An ROI reduces the
domain of this function from the complete image to the relevant part. Therefore, the operator to combine regions
and images is called reduce_domain. This simple operator fulfills the desired task in almost all applications.

R
eg

io
n

O
fI

nt
er

es
t

26 Region Of Interest

3.1.3 A First Example

As an example for the basic concept, the following program shows all important steps to make use of an ROI.
The image is acquired from file. Inside the image, only a circular part around the center should be processed.
To achieve this, a circular region is generated with gen_circle. This region is combined with the image using
reduce_domain. This has the effect that only the pixels of the ROI are processed when calling an operator. If,
e.g., the operator edges_sub_pix is applied to this image, the subpixel accurate contours are extracted only inside
the circle. To make this visible, some visualization operators are added to the end of the example program.

read_image (Image, 'mreut')
gen_circle (ROI, 256, 256, 200)

reduce_domain (Image, ROI, ImageReduced)

edges_sub_pix (ImageReduced, Edges, 'lanser2', 0.5, 20, 40)

dev_display (Image)

dev_display (ROI)

dev_display (Edges)

Figure 3.1: Processing the image only within the circular ROI.

3.2 Extended Concept

When we take a closer look at ROIs, extra steps become important if an application needs to be more flexible.

3.2.1 Segment Image(s)

Very typical for HALCON is the creation of ROIs by a segmentation step. Instead of having a predefined ROI,
the parts of the image that are relevant for further processing are extracted from the image using image processing
methods. This approach is possible because ROIs are nothing else but normal HALCON regions, and therefore
share all their advantages like efficient processing and arbitrary shapes. The segmentation of regions used for ROIs
follows the same approach as standard blob analysis. For more details, please refer to the description of this step
on page 34.

3.2.2 Draw Region

The standard way to specify ROIs is to draw the shape interactively using the mouse. To make this easy, HALCON
provides special operators for standard shapes and free-form shapes. All operators for this kind of action start
with the prefix draw_. The drawing is performed by making use of the left mouse button (drawing, picking,
and dragging) and finished by clicking the right mouse button. For each such draw-operator HALCON provides

3.2 Extended Concept 27

Visualize Results

Create ROI

Align ROIs or Images

Process Regions

Create Region

Draw Region

Segment Image(s)

operators to generate regions by using the returned parameters (see the description of the step Create Region
on page 25). Operators for mouse interaction can be found in the reference manual in the chapter “Graphics .
Drawing”. More information on user interaction can be also found in the chapter Visualization on page 223.

3.2.3 Create Region

The standard way is to generate regions based on the coordinates and dimensions returned by a user interac-
tion or by coordinate values stored in a file. In this case, operators like gen_circle, gen_rectangle2, or
gen_region_polygon_filled are used. More advanced are special shapes used to guide a preprocessing step to
save execution time. Typical examples for this are grids of lines or dots or checker boards. With these shapes, the
images can be covered in a systematic way and checked for specific object occurrences. If you want to segment,
e.g., blobs of a given minimum size it is sufficient to use in a first step a search grid that is finer than the minimum
object size to locate fragments. In a second step these fragments are dilated (dilation_rectangle1) and the
segmentation method is called once again, now within this enlarged area. If the objects cover only a relatively
small area of the image this approach can speed up the process significantly.

3.2.4 Process Regions

Sometimes the shape of a given ROI, either generated from the program or defined by the user, does not fulfill the
requirements. Here, HALCON provides many operators to modify the shape to adapt it accordingly. Often used
operators are, e.g., fill_up to fill holes inside the region, shape_trans to apply a general transformation like
the convex hull or the smallest rectangle, or morphological operators like erosion_circle to make the region
smaller or closing_circle to fill gaps. For more details, please refer to the description of this step on page 36.

3.2.5 Align ROIs or Images

Sometimes the coordinates of an ROI depend on the position of another object in the image. If the object moves,
the ROI must be moved (aligned) accordingly. This is achieved by first locating the object using template matching.
Based on the determined position and the orientation, the coordinates of the ROIs are then transformed.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

R
eg

io
n

O
fI

nt
er

es
t

28 Region Of Interest

3.2.6 Create ROI

This step combines the region and the image to make use of the region as the domain of the image. The stan-
dard method that is recommended to be used is reduce_domain. It has the advantage of being safe and hav-
ing a simple semantics. rectangle1_domain is a shortcut for generating rectangular ROIs (instead of calling
gen_rectangle1 and reduce_domain in sequence). For advanced applications change_domain can be used as
a slightly faster version than reduce_domain. This operator does not perform an intersection with the existing
domain and does not check if the region is outside the image - which will cause a system crash when applying an
operator to the data afterwards if the region lies partly outside the image. If the programmer ensures that the input
region is well defined, this is a way to save (a little) execution time.

3.2.7 Visualize Results

Finally, you might want to display the ROIs or the reduced images. With the operator get_domain, the region
currently used by the image can be accessed and displayed (and processed) like any other region. When displaying
an image, e.g., with disp_image, only the defined pixels are displayed. Pixels in the graphics window outside the
domain of the image will not be modified.

For detailed information see the description of this method on page 223.

3.3 Programming Examples

This section gives a brief introduction to programming ROIs in HALCON. Two examples show the principles of
region generation, combining these with images, and then processing the data.

3.3.1 Processing inside a User Defined Region

Example: %HALCONEXAMPLES%/solution_guide/basics/critical_points.hdev

Figure 3.2 shows an image with marks that are used for a camera calibration in a 3D application. Here, we assume
that the marks must be extracted in a given part of the image only.

a) b)

Figure 3.2: (a) Original image with drawn ROI; (b) reduced image with extracted points.

To achieve this, the user draws a region of interest with the mouse. The corresponding operator is draw_region. It
has the window handle returned by dev_open_window as input and returns a region when the right mouse button
is pressed. The operator reduce_domain combines this region with the image.

draw_region (Region, WindowHandle)

reduce_domain (Image, Region, ImageReduced)

When calling the point extraction operator critical_points_sub_pix on this reduced image, only points inside
the ROI are found. The final part of the program shows how to display these points overlaid on the image.

3.3 Programming Examples 29

critical_points_sub_pix (ImageReduced, 'facet', 1.5, 8, RowMin, ColumnMin, \

RowMax, ColumnMax, RowSaddle, ColSaddle)

dev_clear_window ()

dev_display (ImageReduced)

dev_set_color ('yellow')
for i := 0 to |RowSaddle| - 1 by 1

gen_cross_contour_xld (Cross, RowSaddle[i], ColSaddle[i], 25, 0.785398)

dev_display (Cross)

endfor

3.3.2 Interactive Partial Filtering of an Image

Example: %HALCONEXAMPLES%/solution_guide/basics/median_interactive.hdev

The task is to filter an image with a median filter only at the points where the user clicks with the mouse into the
image, i.e., in the graphics window displaying the image.

Figure 3.3: Partially filtered image.

To do this, a loop is used inside which the mouse position is continuously requested with get_mposition. Be-
cause this operator throws an exception if the mouse is outside the graphics window the call is protected with
dev_set_check.

Button := 0

while (Button != 4)

Row := -1

Column := -1

dev_set_check ('~give_error')
get_mposition (WindowHandle, Row, Column, Button)

dev_set_check ('give_error')

If the mouse is over the window, a circular region is displayed, which shows where the filter would be applied.

if (Row >= 0 and Column >= 0)

gen_circle (Circle, Row, Column, 20)

boundary (Circle, RegionBorder, 'inner')
dev_display (RegionBorder)

If the left mouse button is pressed, median_image must be applied in the local neighborhood of the current mouse
position. This is done by generating a circle with gen_circle and then calling reduce_domain.

if (Button == 1)

reduce_domain (Image, Circle, ImageReduced)

R
eg

io
n

O
fI

nt
er

es
t

30 Region Of Interest

Now, the filter is called with this reduced image and the result is painted back into the input image for possible
repetitive filtering. The loop will be terminated when the right mouse button is clicked.

median_image (ImageReduced, ImageMedian, 'circle', 5, \

'mirrored')
overpaint_gray (Image, ImageMedian)

endif

3.3.3 Inspecting the Contours of a Tool

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/circles.hdev

The task of this example is to inspect the contours of the tool depicted in figure 3.4.

Figure 3.4: Fitting circles to the contours of the tool.

Because the subpixel-precise contour extraction is time-consuming, in a first step an ROI is created via a standard
blob analysis (see Blob Analysis on page 33): With a threshold operator the object to be measured is extracted.
This region is converted to its boundary, omitting the pixels at the image border.

fast_threshold (Image, Region, 0, 120, 7)

boundary (Region, RegionBorder, 'inner')
clip_region_rel (RegionBorder, RegionClipped, 5, 5, 5, 5)

The result is a small region close to the edge of the object. The boundary of the region, i.e., the edge, is dilated
to serve as the ROI for the edge extraction. Now, the subpixel-precise edge extractor is called and the contour is
segmented into straight lines and circular arcs.

dilation_circle (RegionClipped, RegionDilation, 2.5)

reduce_domain (Image, RegionDilation, ImageReduced)

edges_sub_pix (ImageReduced, Edges, 'canny', 2, 20, 60)

segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 5, 4, 3)

For the segments that represent arcs, the corresponding circle parameters are determined. For inspection purposes,
circles with the same parameters are generated and overlaid on the image (see also Contour Processing on page
79).

get_contour_global_attrib_xld (ObjectSelected, 'cont_approx', Attrib)

if (Attrib > 0)

fit_circle_contour_xld (ObjectSelected, 'ahuber', -1, 2, 0, 3, 2, \

Row, Column, Radius, StartPhi, EndPhi, \

PointOrder)

gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, \

rad(360), 'positive', 1.0)

dev_display (ContCircle)

endif

3.4 Relation to Other Methods 31

3.4 Relation to Other Methods

One class of operators does not follow the standard rules for ROI handling: the operators of the measure
tool (see the description of this method on page 45). Here, the ROI is defined during the creation of a tool
(gen_measure_arc and gen_measure_rectangle2) by specifying the coordinates as numeric values. The do-
main defined for the image will be ignored in this case.

3.5 Tips & Tricks

3.5.1 Reuse ROI

If an ROI is used multiple times it is useful to save the region to file and load it at the beginning of the application.
Storing to file is done using write_region, loading with read_region.

3.5.2 Effect of ROI Shape on Speed Up

ROIs are a perfect way to save execution time: The smaller the ROI, the faster the application. This can be used as
a general rule. If we consider this in more detail, we also need to think about the shape of ROIs. Because ROIs are
based on the HALCON regions they use runlength encoding. This type of encoding is perfect if the runs are long.
Therefore, a horizontal line can be both stored and processed more efficiently than a vertical line. This holds as
well for the processing time of ROIs. Obviously this type of overhead is very small and can only be of importance
with very fast operators like threshold.

3.5.3 Binary Images

In some applications, it might be necessary to use ROIs that are available as binary images. To convert these to
HALCON regions, you must use gen_image1 to convert them into a HALCON image, followed by thresh-

old to generate the region. The conversion back can easily be achieved using region_to_bin followed by
get_image_pointer1. It is also possible to import binary image files using read_region.

R
eg

io
n

O
fI

nt
er

es
t

32 Region Of Interest

Blob Analysis 33

Chapter 4

Blob Analysis

The idea of blob analysis is quite easy: In an image the pixels of the relevant objects (also called foreground) can
be identified by their gray value. For example, figure 4.1 shows tissue particles in a liquid. These particles are
bright and the liquid (background) is dark. By selecting bright pixels (thresholding) the particles can be detected
easily. In many applications this simple condition of dark and bright pixels no longer holds, but the same results
can be achieved with extra pre-processing or alternative methods for pixel selection / grouping.

a) b)

Figure 4.1: Basic idea of blob analysis: (a) original image, (b) extracted blobs with calculated center points.

The advantage of blob analysis is the extreme flexibility that comes from the huge number of operators that HAL-
CON offers in this context. Furthermore, these methods typically have a very high performance. Methods known
from blob analysis can also be combined with many other vision tasks, e.g., as a pre-processing step for a flexible
generation of regions of interest.

4.1 Basic Concept

Blob analysis mainly consists of three parts:

4.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 21.

B
lo

b
A

na
ly

si
s

34 Blob Analysis

Extract Features

Segment Image(s)

Acquire Image(s)

4.1.2 Segment Image(s)

Having acquired the image, the task is to select the foreground pixels. This is also called segmentation. The result
of this process typically is referred to as blobs (binary large objects). In HALCON, the data type is called a region.

4.1.3 Extract Features

In the final step, features like the area (i.e., the number of pixels), the center of gravity, or the orientation are
calculated.

4.1.4 A First Example

An example for this basic concept is the following program, which belongs to the example explained above. Here,
the image is acquired from file. All pixels that are brighter than 120 are selected using threshold. Then, an
extra step is introduced which is not so obvious: The operator connection separates the set of all bright pixels
into so called connected components. The effect of this step is that we now have multiple regions instead of the
single region that is returned by threshold. The last step of this program is the calculation of some features.
Here, the operator area_center determines the size (number of pixels) and the center of gravity. Please note that
area_center returns multiple values for all three feature parameters (one value for each connected component).

read_image (Image, 'particle')
threshold (Image, BrightPixels, 120, 255)

connection (BrightPixels, Particles)

area_center (Particles, Area, Row, Column)

4.2 Extended Concept

In many cases the segmentation of blobs will be more advanced than in the above example. Reasons for this are,
e.g., clutter or inhomogeneous illumination. Furthermore, postprocessing like transforming the features to real
world units or visualization of results are often required.

4.2.1 Use Region of Interest

Blob analysis can be sped up by using a region of interest. The more the region in which the blobs are searched
can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 25.

4.2.2 Align ROIs or Images

In some applications, the regions of interest must be aligned relative to another object. Alternatively, the image
itself can be aligned, e.g., by rotating or cropping it.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

4.2 Extended Concept 35

Visualize Results

Transform Results Into
World Coordinates

Extract Features

Process Regions

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs or Images

Use Region of Interest

Acquire Image(s)

4.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove lens distortions or to transform the
image into a reference point of view.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on page 80.

4.2.4 Preprocess Image(s) (Filtering)

The next important part is the pre-processing of the image. Here, operators like mean_image or gauss_filter
can be used to eliminate noise. A fast but less perfect alternative to gauss_filter is binomial_filter. The op-
erator median_image is useful for suppressing small spots or thin lines. The operator anisotropic_diffusion
is useful for edge-preserving smoothing, and finally fill_interlace is used to eliminate defects caused by
interlaced cameras.

4.2.5 Extract Segmentation Parameters

Instead of using fixed threshold values, they can be extracted dynamically for each image. One example for this
is a gray value histogram that has multiple peaks, one for each object class. Here, you can use the operators

B
lo

b
A

na
ly

si
s

36 Blob Analysis

gray_histo_abs and histo_to_thresh.

As an advanced alternative, you can use the operator intensity in combination with a reference image that
contains only background: During setup, you determine the mean gray value of a background region. During the
inspection, you again determine this mean gray value. If it has changed, you adapt the threshold accordingly.

4.2.6 Segment Image(s)

For the segmentation various methods can be used. The most simple method is threshold, where one or more gray
value ranges that belong to the foreground objects are specified. Another very common method is dyn_threshold.
Here, a second image is passed as a reference. With this approach, a local threshold instead of a global thresh-
old is used. These local threshold values are stored in the reference image. The reference image can either be
static by taking a picture of the empty background or can be determined dynamically with smoothing filters like
mean_image.

4.2.7 Process Regions

Once blob regions are segmented, it is often necessary to modify them, e.g., by suppressing small areas, regions
of a given orientation, or regions that are close to other regions. In this context, the morphological operators
opening_circle and opening_rectangle1 are often used to suppress noise and closing_circle and clos-

ing_rectangle1 to fill gaps.

Blobs with a specific feature can be selected with select_shape, select_shape_std, and se-

lect_shape_proto.

4.2.8 Extract Features

To finalize the image processing, features of the blobs are extracted. The type of features needed depends on the
application. A full list can be found in the Reference Manual in the chapters “Regions . Features” and “Image .
Features”.

4.2.9 Transform Results Into World Coordinates

Features like the area or the center of gravity often must be converted to world coordinates. This can be achieved
with the HALCON camera calibration.

How to transform results into world coordinates is described in detail in the Solution Guide III-C in section 3.3 on
page 76.

4.2.10 Visualize Results

Finally, you might want to display the images, the blob (regions), and the features.

For detailed information see the description of this method on page 223.

4.3 Programming Examples

This section gives a brief introduction to using HALCON for blob analysis.

4.3 Programming Examples 37

a) b)

c)

Figure 4.2: Extracting hexagonal crystals: (a) original image with arrows marking the crystals to be extracted, (b)
result of the initial segmentation, (c) finally selected blobs.

4.3.1 Crystals

Example: %HALCONEXAMPLES%/solution_guide/basics/crystal.hdev

Figure 4.2a shows an image taken in the upper atmosphere with collected samples of crystals. The task is to
analyze the objects to determine the frequency of specific shapes. One of the important objects are the hexagonally
shaped crystals.

First, the image is read from file with read_image. The segmentation of objects is performed with a local thresh-
old because of the relatively low contrast of the crystals combined with a non-homogeneous background. The
background is determined with the average filter mean_image. The filter mask size is selected such that it has
about three times the width of the dark areas. dyn_threshold now compares the smoothed with the original gray
values, selecting those pixels that are darker by a contrast of 8 gray values. connection separates the objects into
connected components. Figure 4.2b shows the result of this initial segmentation.

read_image (Image, 'crystal')
mean_image (Image, ImageMean, 21, 21)

dyn_threshold (Image, ImageMean, RegionDynThresh, 8, 'dark')
connection (RegionDynThresh, ConnectedRegions)

In the following processing step, the task now is to select only the hexagonally shaped crystals. For this, they are
first transformed into their convex hull. This is like putting a rubber band around each region. From these regions,
those that are big (select_shape) and have a given gray value distribution (select_gray) are selected. The
parameters for the selection are determined so that only the relevant crystals remain (see figure 4.2c).

shape_trans (ConnectedRegions, ConvexRegions, 'convex')
select_shape (ConvexRegions, LargeRegions, 'area', 'and', 600, 2000)

select_gray (LargeRegions, Image, Crystals, 'entropy', 'and', 1, 5.6)

4.3.2 Atoms

Example: %HALCONEXAMPLES%/solution_guide/basics/atoms.hdev

Specialized microscopes are able to determine the rough location of single atoms. This is useful, e.g., to analyze
the grid change of crystals at a p-n-junction. A segmentation that works perfectly well on images like these is the
watershed method. Here, each dark basin is returned as a single region. Because at the outer part of the image
atoms are only partially visible, the first task is to extract only those that are not close to the image border. Finally,

B
lo

b
A

na
ly

si
s

38 Blob Analysis

the irregularity is extracted. This is done by looking for those atoms that have an abnormal (squeezed) shape (see
figure 4.3).

gauss_filter (Image, ImageGauss, 5)

watersheds (ImageGauss, Basins, Watersheds)

select_shape (Basins, SelectedRegions1, 'column1', 'and', 2, Width - 1)

select_shape (SelectedRegions1, SelectedRegions2, 'row1', 'and', 2, \

Height - 1)

select_shape (SelectedRegions2, SelectedRegions3, 'column2', 'and', 1, \

Width - 3)

select_shape (SelectedRegions3, Inner, 'row2', 'and', 1, Height - 3)

select_shape (Inner, Irregular, ['moments_i1', 'moments_i1'], 'or', [0, \

9.5e8], [1.5e8, 1e10])

Figure 4.3: Inspecting atom structure.

4.3.3 Analyzing Particles

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/particle.hdev

The task of this example is to analyze particles in a liquid. The main difficulty in this application is the presence
of two types of objects: big bright objects and small objects with low contrast. In addition, the presence of noise
complicates the segmentation.

a) b)

Figure 4.4: Extracting the small particles: (a) original image, (b) result.

4.3 Programming Examples 39

The program segments the two classes of objects separately using two different methods: global and local thresh-
olding. With additional post-processing, the small particles can be extracted in a robust manner.

threshold (Image, Large, 110, 255)

dilation_circle (Large, LargeDilation, 7.5)

complement (LargeDilation, NotLarge)

reduce_domain (Image, NotLarge, ParticlesRed)

mean_image (ParticlesRed, Mean, 31, 31)

dyn_threshold (ParticlesRed, Mean, SmallRaw, 3, 'light')
opening_circle (SmallRaw, Small, 2.5)

connection (Small, SmallConnection)

4.3.4 Extracting Forest Features from Color Infrared Image

Example: %HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/forest.hdev

The task of this example is to detect different object classes in the color infrared image depicted in figure 4.5: trees
(coniferous and deciduous), meadows, and roads.

a) b) c)

Figure 4.5: (a) Original image; (b) extracted trees and meadows; (c) extracted roads.

The image data is a color infrared image, which allows to extract roads very easily because of their specific color.
For that, the multi-channel image is split into its three channels and each channel is investigated individually.
Further information about decomposing multi-channel images can be found in Color Processing on page 131.

read_image (Forest, 'forest_air1')
decompose3 (Forest, Red, Green, Blue)

threshold (Blue, BlueBright, 80, 255)

connection (BlueBright, BlueBrightConnection)

select_shape (BlueBrightConnection, Path, 'area', 'and', 100, 100000000)

Beech trees are segmented in the red channel based on their intensity and minimum size.

threshold (Red, RedBright, 120, 255)

connection (RedBright, RedBrightConnection)

select_shape (RedBrightConnection, RedBrightBig, 'area', 'and', 1500, \

10000000)

closing_circle (RedBrightBig, RedBrightClosing, 7.5)

opening_circle (RedBrightClosing, RedBrightOpening, 9.5)

connection (RedBrightOpening, RedBrightOpeningConnection)

select_shape (RedBrightOpeningConnection, BeechBig, 'area', 'and', 1000, \

100000000)

select_gray (BeechBig, Blue, Beech, 'mean', 'and', 0, 59)

B
lo

b
A

na
ly

si
s

40 Blob Analysis

Meadows have similar spectral properties, but are slightly brighter.

union1 (Beech, BeechUnion)

complement (BeechUnion, NotBeech)

difference (NotBeech, Path, NotBeechNotPath)

reduce_domain (Red, NotBeechNotPath, NotBeechNotPathRed)

threshold (NotBeechNotPathRed, BrightRest, 150, 255)

connection (BrightRest, BrightRestConnection)

select_shape (BrightRestConnection, Meadow, 'area', 'and', 500, 1000000)

The coniferous trees are extracted using the watershed approach with an additional thresholding inside the basins
to get rid of the shadow areas.

union2 (Path, RedBrightClosing, BeechPath)

smooth_image (Red, RedGauss, 'gauss', 4.0)

invert_image (RedGauss, Invert)

watersheds (Invert, SpruceRed, Watersheds)

select_shape (SpruceRed, SpruceRedLarge, 'area', 'and', 100, 5000)

select_gray (SpruceRedLarge, Red, SpruceRedInitial, 'max', 'and', 100, 200)

gen_empty_obj (LocalThresh)

count_obj (SpruceRedInitial, NumSpruce)

for i := 1 to NumSpruce by 1

select_obj (SpruceRedInitial, SingleSpruce, i)

min_max_gray (SingleSpruce, Red, 50, Min, Max, Range)

reduce_domain (Red, SingleSpruce, SingleSpruceRed)

threshold (SingleSpruceRed, SingleSpruceBright, Min, 255)

connection (SingleSpruceBright, SingleSpruceBrightCon)

select_shape_std (SingleSpruceBrightCon, MaxAreaSpruce, 'max_area', 70)

concat_obj (MaxAreaSpruce, LocalThresh, LocalThresh)

endfor

opening_circle (LocalThresh, FinalSpruce, 1.5)

4.3.5 Checking a Boundary for Fins

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/fin.hdev

The task of this example is to check the outer boundary of a plastic part. In this case, some objects show fins that
are not allowed for faultless pieces (see figure 4.6).

Figure 4.6: Boundary with extracted fin.

The program first extracts the background region (in which the fin appears as an indentation).

binary_threshold (Fin, Background, 'max_separability', 'light', \

UsedThreshold)

4.3 Programming Examples 41

This indentation in the background region is then closed using a morphological operator.

closing_circle (Background, ClosedBackground, 250)

Significant differences between the closed region and the original region are production errors.

difference (ClosedBackground, Background, RegionDifference)

opening_rectangle1 (RegionDifference, FinRegion, 5, 5)

4.3.6 Bonding Balls

Example: %HALCONEXAMPLES%/hdevelop/Applications/Completeness-Check/ball.hdev

The task of this example is to inspect the diameter of the ball bonds depicted in figure 4.7.

Figure 4.7: Measuring the diameter of ball bonds.

The extraction of the ball bonds is a two step approach: First, the die is located by segmenting bright areas and
transforming them into their smallest surrounding rectangle.

threshold (Bond, Bright, 100, 255)

shape_trans (Bright, Die, 'rectangle2')

Now, the processing is focused to the region inside the die using reduce_domain. In this ROI, the program checks
for dark areas that correspond to wire material.

reduce_domain (Bond, Die, DieGrey)

threshold (DieGrey, Wires, 0, 50)

fill_up_shape (Wires, WiresFilled, 'area', 1, 100)

After removing irrelevant structures and arranging the bonds in a predefined order, the desired features are ex-
tracted.

opening_circle (WiresFilled, Balls, 15.5)

connection (Balls, SingleBalls)

select_shape (SingleBalls, IntermediateBalls, 'circularity', 'and', 0.85, \

1.0)

sort_region (IntermediateBalls, FinalBalls, 'first_point', 'true', 'column')
smallest_circle (FinalBalls, Row, Column, Radius)

4.3.7 Surface Scratches

Example: %HALCONEXAMPLES%/solution_guide/basics/surface_scratch.hdev

B
lo

b
A

na
ly

si
s

42 Blob Analysis

c)

a) b)

Figure 4.8: Detecting scratches on a metal surface: (a) original image, (b) extracted scratches still partly fractioned,
(c) final result with merged scratches.

This example detects scratches on a metal surface (see figure 4.8).

The main difficulties for the segmentation are the inhomogenous background and the fact that the scratches
are thin structures. Both problems can be solved using a local threshold, i.e., the operators mean_image and
dyn_threshold. After connection, the small objects that are mainly noise are removed (see figure 4.8b).

mean_image (Image, ImageMean, 7, 7)

dyn_threshold (Image, ImageMean, DarkPixels, 5, 'dark')
connection (DarkPixels, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10, 1000)

The scratches are part of the selection, but if we look closely we see that they are partially fractioned. To solve this
problem we combine all fractions again into one big region. By applying dilation_circle, neighboring parts
with a given maximum distance are now combined. To finally get the correct shape of the scratches - which are
now too wide because of the dilation - skeleton is used to thin the shape to a width of one pixel.

union1 (SelectedRegions, RegionUnion)

dilation_circle (RegionUnion, RegionDilation, 3.5)

skeleton (RegionDilation, Skeleton)

connection (Skeleton, Errors)

The last step is to distinguish between small dots and scratches on the surface. This is achieved with se-

lect_shape, using the size as feature. Figure 4.8c depicts the result.

select_shape (Errors, Scratches, 'area', 'and', 50, 10000)

select_shape (Errors, Dots, 'area', 'and', 1, 50)

4.4 Relation to Other Methods

4.4.1 Methods that are Useful for Blob Analysis

Color Processing (see description on page 131)
Color processing can be considered as an advanced way of blob analysis that uses three color channels instead of
one gray value channel. HALCON provides operators for color space transformation, feature extraction, and pixel
classification, which can be used in combination with blob analysis.

Texture Analysis (see description on page 143)

4.5 Tips & Tricks 43

Texture analysis is a method for finding regular or irregular structures, e.g., on the surface of an object and it is
therefore useful if texture is a feature of the object to be inspected and simple blob analysis is not sufficient. For
texture analysis not only the single gray values but also a larger pixel neighborhood is used. HALCON provides
filters that emphasize or suppress specific textures. The result of these filters can then be segmented.

4.4.2 Methods that are Using Blob Analysis

OCR (see description on page 183)
Blob analysis is typically used as a preprocessing step for OCR to segment the characters.

4.4.3 Alternatives to Blob Analysis

Edge Extraction (Subpixel-Precise) (see description on page 63)
In blob analysis a region is described by the gray values of its pixels. As an alternative, a region could be described
by the change of the gray values at their borders. This approach is called edge detection.

Classification (see description on page 119)
To select specific gray values, thresholds must be determined. In most cases, fixed values are used or the current
value is determined by a feature operator. In some cases it is useful if the system determines the ranges auto-
matically. This can be achieved by using a classifier. In addition, a classifier can also be used to automatically
distinguish between good and bad objects based on the extracted features and samples for both classes.

4.5 Tips & Tricks

4.5.1 Connected Components

By default, most HALCON segmentation operators like threshold return one region even if you see multiple not
connected areas on the screen. To transform this region into separated objects (i.e., connected components in the
HALCON nomenclature) one has to call connection.

4.5.2 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many ways to
achieve this goal. Here the most common methods are listed.

• Regions of interest are the standard method to increase the speed by processing only those areas where
objects need to be inspected. This can be done using pre-defined regions but also by an online generation of
the regions of interest that depend on other objects found in the image.

• If an object has a specific minimum size, the operator fast_threshold is a fast alternative to threshold.
This kind of fast operator can also directly be generated by using operators like gen_grid_region and
reduce_domain before calling the thresholding operator.

• By default, HALCON performs some data consistency checks. These can be switched off using set_check.

• By default, HALCON initializes new images. Using set_system with the parameter "init_new_image",
this behavior can be changed.

4.6 Advanced Topics

4.6.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. In some cases, however, not single images but
an “infinite” sequence of images showing objects, e.g., on a conveyor belt, must be processed. In this case the end

B
lo

b
A

na
ly

si
s

44 Blob Analysis

of one image is the beginning of the next one. This means that objects that partially lie in both images must be
combined into one object. For this purpose HALCON provides the operator merge_regions_line_scan. This
operator is called after the segmentation of one image, and combines the current objects with those of previous
images. For more information see the Solution Guide II-A.

4.6.2 High Accuracy

Sometimes high accuracy is required. This is difficult with blob analysis because objects are only extracted with
integer pixel coordinates. Note, however, that many features that can be calculated for regions, e.g., the center of
gravity, will be subpixel-precise. One way to get higher accuracy is to use a higher resolution. This has the effect
that the higher number of pixels for each region results in better statistics to estimate features like the center of
gravity (area_center). As an alternative, gray value features (like area_center_gray) can be used if the object
fulfills specific gray value requirements. Here, the higher accuracy comes from the fact that for each pixel 255
values instead of one value (foreground or background) is used. If a very high accuracy is required, you should use
the subpixel-precise edge and line extraction on page 63.

1D Measuring 45

Chapter 5

1D Measuring

The idea of 1D measuring (also called 1D metrology or caliper) is very intuitive: Along a predefined region of
interest, edges are located that are mainly perpendicular to the orientation of the region of interest. Here, edges are
defined as transitions from dark to bright or from bright to dark.

Based on the extracted edges, you can measure the dimensions of parts. For example, you can measure the width
of a part by placing a region of interest over it and locating the edges on its left and the right side. The effect of
this can be seen in figure 5.1a, whereas figure 5.1b shows the corresponding gray value profile.

a) b)

Figure 5.1: (a) Measuring a fuse wire; (b) gray value profile along the region of measurement with extracted edges.

In addition to these simple rectangular regions of interest, circular arcs can be used to measure, e.g., the widths of
the cogs on a cog wheel.

The advantage of the measure approach is its ease of use combined with a short execution time and a very high
accuracy. With only a few operators, high-performing applications can be realized.

Alternatively, you can use HDevelop’s Measure Assistant, which allows you to perform measurements with just
a few mouse clicks. How to measure with this assistant is described in detail in the HDevelopUser’s Guide,
section 7.4 on page 219.

5.1 Basic Concept

Measuring consists of these main steps:

5.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 21.

1D
M

ea
su

ri
ng

46 1D Measuring

Measure

Create Measure Object

Acquire Image(s)

5.1.2 Create Measure Object

Having acquired the image, you specify where to measure, i.e., you describe the position, orientation, etc. of the
line or arc along which you want to measure. Together with some other parameters, this information is stored in
the so-called measure object.

You access the measure object by using a so-called handle. Similarly to a file handle, this handle is needed when
working with the tool. Each time the measure tool is executed, this handle is passed as a parameter.

In object-oriented languages like C++ it is possible to use the measure class instead of the low-level approach with
handles. Here, creation and destruction are realized with the standard object-oriented methods.

5.1.3 Measure

Then, you can apply the measuring by specifying the measure object and some other vision parameters like, e.g.,
the minimum contrast. You can find detailed information about this step in the Solution Guide III-A in chapter 3
on page 15.

5.2 Extended Concept

In many cases, a measuring application will be more complex than described above. Reasons for this are, e.g.,
clutter or inhomogeneous illumination. Furthermore, post-processing like transforming the features to real-world
units, or visualization of results may be required.

5.2.1 Radiometrically Calibrate Image(s)

To allow high-accuracy measurements, the camera should have a linear response function, i.e., the gray values in
the images should depend linearly on the incoming energy. Since some cameras do not have a linear response
function, HALCON provides the so-called radiometric calibration (gray value calibration): With the operator
radiometric_self_calibration you can determine the inverse response function of the camera (offline) and
then apply this function to the images using lut_trans before performing the measuring.

5.2.2 Align ROIs or Images

In some applications, the line or arc along which you want to measure, must be aligned relative to another object.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

5.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove lens distortion.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on page 80.

5.2 Extended Concept 47

Visualize Results

Transform Results Into
World Coordinates

Measure

Create Measure Object

Rectify Image(s)

Align ROIs or Images

Radiometrically Calibrate
Image(s)

Acquire Image(s)

5.2.4 Create Measure Object

You can teach the measurement line or arc interactively with operators like draw_rectangle2 or read its param-
eters from file (read_string). As an alternative, its coordinates can be generated based on the results of other
vision tools like Blob Analysis (see the description of this method on page 33). In particular, the measurement line
or arc may need to be aligned to a certain object as described above.

If the measurement is always performed along the same line or arc, you can create the measure object offline and
then use it multiple times. However, if you want to align the measurement, the position and orientation of the line
or arc will differ for each image. In this case, you must create a new measure object for each image. An exception
to this rule is if only the position changes but not the orientation. Then, you can keep the measure object and adapt
its position via translate_measure.

Please refer to the Solution Guide III-A, chapter 2 on page 9, for more information.

5.2.5 Transform Results Into World Coordinates

If you have calibrated your vision system, you can easily transform the results of measuring into world coordinates
with image_points_to_world_plane. How to do this is described in the Solution Guide III-A in section 3.5 on
page 22.

This is described in detail in the Solution Guide III-C in section 3.3 on page 76.

5.2.6 Visualize Results

The best way to visualize edge positions is to create (short) XLD line segments with operators like
gen_contour_polygon_xld.

For detailed information see the description of this method on page 223.

1D
M

ea
su

ri
ng

48 1D Measuring

5.3 Programming Examples

The following examples gives a brief introduction to using the 1D measuring tool of HALCON. The longest parts
are pre- and postprocessing; the measurement itself consists only of two operator calls. Further examples are
described in the Solution Guide III-A.

5.3.1 Inspecting a Fuse

Example: %HALCONEXAMPLES%/solution_guide/basics/fuse.hdev

Preprocessing consists of the generation of the measurement line. In the example program, this step is accom-
plished by assigning the measure object’s parameters to variables.

read_image (Fuse, 'fuse')
Row := 297

Column := 545

Length1 := 80

Length2 := 10

Angle := rad(90)

gen_measure_rectangle2 (Row, Column, Angle, Length1, Length2, Width, Height, \

'bilinear', MeasureHandle)

Now the actual measurement is performed by applying the measure object to the image. The parameters are chosen
such that edges around dark areas are grouped to so called pairs, returning the position of the edges together with
the width and the distance of the pairs.

measure_pairs (Fuse, MeasureHandle, 1, 1, 'negative', 'all', RowEdgeFirst, \

ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, \

ColumnEdgeSecond, AmplitudeSecond, IntraDistance, \

InterDistance)

The last part of the program displays the results by generating a region with the parameters of the measurement
line and converting the edge positions to short XLD contours (see figure 5.2).

Figure 5.2: Measuring the width of the fuse wire.

for i := 0 to |RowEdgeFirst| - 1 by 1

gen_contour_polygon_xld (EdgeFirst, \

[-sin(Angle + rad(90)) * Length2 + RowEdgeFirst[i], \

-sin(Angle - rad(90)) * Length2 + RowEdgeFirst[i]], \

[cos(Angle + rad(90)) * Length2 + ColumnEdgeFirst[i], \

cos(Angle - rad(90)) * Length2 + ColumnEdgeFirst[i]])

gen_contour_polygon_xld (EdgeSecond, \

[-sin(Angle + rad(90)) * Length2 + RowEdgeSecond[i], \

-sin(Angle - rad(90)) * Length2 + RowEdgeSecond[i]], \

[cos(Angle + rad(90)) * Length2 + ColumnEdgeSecond[i], \

cos(Angle - rad(90)) * Length2 + ColumnEdgeSecond[i]])

write_string (WindowID, 'width: ' + IntraDistance[i] + ' pix')
endfor

5.3 Programming Examples 49

5.3.2 Inspect Cast Part

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/measure_arc.hdev

The task of this example is to inspect the distance between elongated holes of a cast part after chamfering (see fig-
ure 5.3). Note that to achieve best accuracy it would be recommended to use backlight combined with a telecentric
lens instead of the depicted setup.

Figure 5.3: Measuring the distance between the holes.

This task can be solved easily by using the measure tool with a circular measurement ROI. The center of the ROI
is placed into the center of the cast part; its radius is set to the distance of the elongated holes from the center.

Row := 275

Column := 335

Radius := 107

AngleStart := -rad(55)

AngleExtent := rad(170)

gen_measure_arc (Row, Column, Radius, AngleStart, AngleExtent, 10, Width, \

Height, 'nearest_neighbor', MeasureHandle)

Now, the distance between the holes can be measured with a single operator call:

measure_pos (Zeiss1, MeasureHandle, 1, 10, 'all', 'all', RowEdge, \

ColumnEdge, Amplitude, Distance)

5.3.3 Inspecting an IC Using Fuzzy Measuring

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/fuzzy_measure_pin.hdev

The task of this example is to inspect the lead width and the lead distance of the IC depicted in figure 5.4.

The illumination conditions in this example are quite difficult. This has the effect that four edges are visible for
each lead. Fuzzy rules are used to restrict the measurement to the correct (outer) leads.

gen_measure_rectangle2 (Row1, Col1, Phi1, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle1)

create_funct_1d_pairs ([0.0, 0.3], [1.0, 0.0], FuzzyAbsSizeDiffFunction)

set_fuzzy_measure_norm_pair (MeasureHandle1, 11.0, 'size_abs_diff', \

FuzzyAbsSizeDiffFunction)

fuzzy_measure_pairs (Image, MeasureHandle1, 1, 30, 0.5, 'positive', \

RowEdgeFirst1, ColumnEdgeFirst1, AmplitudeFirst1, \

RowEdgeSecond1, ColumnEdgeSecond1, AmplitudeSecond1, \

RowEdgeMiddle1, ColumnEdgeMiddle1, FuzzyScore1, \

IntraDistance1, InterDistance1)

5.3.4 Measuring Leads of a Moving IC

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/pm_measure_board.hdev

1D
M

ea
su

ri
ng

50 1D Measuring

Figure 5.4: Measuring the width and distance of the leads.

The task of this example is to measure the positions of the leads of a chip (see figure 5.5). Because the chip can
appear at varying positions and angles, the regions of interest used for the measurement must be aligned.

a) b)

Figure 5.5: (a) Model image with measurement ROIs; (b) measuring the leads in the aligned ROIs.

In this case, the alignment is achieved by searching for the print on the chip using shape-based matching (see
Matching on page 89).

gen_rectangle1 (Rectangle, ModelRow1, ModelColumn1, ModelRow2, ModelColumn2)

reduce_domain (Image, Rectangle, ImageModel)

create_generic_shape_model (ModelID)

After the print has been found, the positions of the measurement ROIs are transformed relative to the position of
the print.

5.3 Programming Examples 51

find_generic_shape_model (SearchImage, ModelID, MatchResultID, \

NumMatchResult)

get_generic_shape_model_result_object (ShapeModelTrans, MatchResultID, \

'all', 'contours')
get_generic_shape_model_result (MatchResultID, 'all', 'score', Score)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2D)

affine_trans_pixel (HomMat2D, -RectDeltaRow, RectDeltaColumn, Rect1RowCheck, \

Rect1ColCheck)

affine_trans_pixel (HomMat2D, RectDeltaRow, RectDeltaColumn, Rect2RowCheck, \

Rect2ColCheck)

get_generic_shape_model_result (MatchResultID, 'best', 'angle', AngleCheck)

gen_rectangle2 (Rectangle1Check, Rect1RowCheck, Rect1ColCheck, AngleCheck, \

RectLength1, RectLength2)

Then, the measure tools are created and the measurement is applied.

gen_measure_rectangle2 (Rect1RowCheck, Rect1ColCheck, AngleCheck, \

RectLength1, RectLength2, Width, Height, \

'bilinear', MeasureHandle1)

gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck, AngleCheck, \

RectLength1, RectLength2, Width, Height, \

'bilinear', MeasureHandle2)

measure_pairs (SearchImage, MeasureHandle1, 2, 40, 'positive', \

'all', RowEdgeFirst1, ColumnEdgeFirst1, \

AmplitudeFirst1, RowEdgeSecond1, ColumnEdgeSecond1, \

AmplitudeSecond1, IntraDistance1, InterDistance1)

measure_pairs (SearchImage, MeasureHandle2, 2, 40, 'positive', \

'all', RowEdgeFirst2, ColumnEdgeFirst2, \

AmplitudeFirst2, RowEdgeSecond2, ColumnEdgeSecond2, \

AmplitudeSecond2, IntraDistance2, InterDistance2)

5.3.5 Inspect IC

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/measure_pin.hdev

The task of this example is to inspect major dimensions of an IC (see figure 5.6).

a) b)

Figure 5.6: Measuring the dimensions of leads: (a) width of the leads and distance between them; (b) length of the
leads.

1D
M

ea
su

ri
ng

52 1D Measuring

In the first step the extent of each lead and the distance between the leads is measured. For this, a rectangle that
contains the leads is defined (see figure 5.6a), which is used to generate the measure object. This is used to extract
pairs of straight edges that lie perpendicular to the major axis of the rectangle.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle)

measure_pairs (Image, MeasureHandle, 1.5, 30, 'negative', 'all', \

RowEdgeFirst, ColumnEdgeFirst, AmplitudeFirst, \

RowEdgeSecond, ColumnEdgeSecond, AmplitudeSecond, PinWidth, \

PinDistance)

From the extracted pairs of straight edges, the number of leads, their average width, and the average distance
between them is derived.

numPins := |PinWidth|

avgPinWidth := sum(PinWidth) / |PinWidth|

avgPinDistance := sum(PinDistance) / |PinDistance|

The second part shows the power of the measure tool: The length of the leads is determined. This is possible
although each lead has a width of only a few pixels. For this, a new measure object is generated based on a
rectangle that contains the leads on two opposite sides of the IC (see figure 5.6b). The distance between the first
and the second found edge is the length of the upper leads, and the distance between the third and the fourth edge
is the length of the lower leads.

gen_measure_rectangle2 (Row, Column, Phi, Length1, Length2, Width, Height, \

'nearest_neighbor', MeasureHandle)

measure_pos (Image, MeasureHandle, 1.5, 30, 'all', 'all', RowEdge, \

ColumnEdge, Amplitude, Distance)

5.4 Relation to Other Methods

5.4.1 Alternatives to 1D Measuring

Edge Extraction (Subpixel-Precise) (see description on page 63)
A very flexible way to measure parameters of edges is to extract the edge contour with edges_sub_pix. The
advantage of this approach is that it can handle free-form shapes. Furthermore, it allows to determine attributes
like the edge direction for each edge point.

5.5 Tips & Tricks

5.5.1 Suppress Clutter or Noise

In many applications there is clutter or noise that must be suppressed. The measure operators offer multiple
approaches to achieve this. The best one is to increase the threshold for the edge extraction to eliminate faint
edges. In addition, the value for the smoothing parameter can be increased to smooth irrelevant edges away.

When grouping edges to pairs, noise edges can lead to an incorrect grouping if they are in the vicinity of the “real”
edge and have the same polarity. In such a case you can suppress the noise edges by selecting only the strongest
edges of a sequence of consecutive rising and falling edges.

5.5.2 Reuse Measure Object

Because the creation of a measure object needs some time, we recommend to reuse them if possible. If no align-
ment is needed, the measure object can, for example, be created offline and reused for each image. If the alignment
involves only a translation, translate_measure can be used to correct the position.

5.6 Advanced Topics 53

5.5.3 Use an Absolute Gray Value Threshold

As an alternative to edge extraction, the measurements can be performed based on an absolute gray value threshold
by using the operator measure_thresh. Here, all positions where the gray value crosses the given threshold are
selected.

5.6 Advanced Topics

5.6.1 Fuzzy Measuring

In case there are extra edges that do not belong to the measurement, HALCON offers an extended version of
measuring: fuzzy measuring. This tool allows to define so-called fuzzy rules, which describe the features of good
edges. Possible features are, e.g., the position, the distance, the gray values, or the amplitude of edges. These
functions are created with create_funct_1d_pairs and passed to the tool with set_fuzzy_measure. Based
on these rules, the tool will select the most appropriate edges.

The advantage of this approach is the flexibility to deal with extra edges even if a very low minimum threshold or
smoothing is used. An example for this approach is the example program fuzzy_measure_pin.hdev on page
49.

Please refer to the Solution Guide III-A, chapter 4 on page 27, for more information.

5.6.2 Evaluation of Gray Values

To have full control over the evaluation of the gray values along the measurement line or arc, you can use mea-

sure_projection. The operator returns the projected gray values as an array of numbers, which can then be
further processed with HALCON operators for tuple or function processing (see the chapters “Tuple” and “Tools
. Function” in the Reference Manual). Please refer to the Solution Guide III-A, section 3.4 on page 19, for more
information.

1D
M

ea
su

ri
ng

54 1D Measuring

Edge Extraction (Pixel-Precise) 55

Chapter 6

Edge Extraction (Pixel-Precise)

The traditional way of finding edges, i.e., dark / light transitions in an image, is to apply an edge filter. These filters
have the effect to find pixels at the border between light and dark areas. In mathematical terms this means that
these filters determine the image gradient. This image gradient is typically returned as the edge amplitude and/or
the edge direction. By selecting all pixels with a high edge amplitude, contours between areas can be extracted.

Another approach to find edges is to use a deep learning model trained to find edges. This method offers the
advantage that its results can be further improved by retraining the model. Such a retraining makes it even possible
to find specific edges on a custom task.

b)

a)

c)

Figure 6.1: Result of applying an edge filter: (a) amplitude, (b) direction, (c) extracted edges.

Please note that HALCON also provides operators for subpixel-precise edge and line extraction (see the description
of this method on page 63) and for successive post-processing and feature extraction.

6.1 Edge Extraction Using Edge Filters

HALCON offers standard edge filters like the Sobel, Roberts, Robinson, or Frei filters. Besides these, post-
processing operators like hysteresis thresholding or non-maximum suppression are provided. In addition, filters
that determine the edge amplitude and edge direction accurately are provided. This enables you to apply the filters
in a flexible manner.

6.1.1 Basic Concept

Using edge filters typically consists of three basic steps:

E
dg

e
E

xt
ra

ct
io

n
I

56 Edge Extraction (Pixel-Precise)

Extract Edges

Filter Image

Acquire Image(s)

6.1.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 21.

6.1.1.2 Filter Image

On the input image, an edge filter is applied. This operation results in one or two images. The basic result is the
edge amplitude, which is typically stored as a byte image, with the gray value of each pixel representing the local
edge amplitude. Optionally, the direction of the edges is returned. These values are stored in a so-called direction
image, with the values 0...179 representing the angle in degrees divided by two.

6.1.1.3 Extract Edges

The result of applying the edge filter is an image containing the edge amplitudes. From this image, the edges are
extracted by selecting the pixels with a given minimum edge amplitude using a threshold operator. The resulting
edges are typically broader than one pixel and therefore have to be thinned. For this step, various methods are
available.

6.1.2 A First Example

The following program shows an example for the basic concept of edge filters. As an edge filter, sobel_amp is
applied with the mode ’thin_sum_abs’ to get thin edges together with a 3x3 filter mask. Then, the operator
threshold is used to extract all pixels with an edge amplitude higher than 20. The resulting region contains
some areas where the edge is wider than one pixel. Therefore, the operator skeleton is applied to thin all edges
completely. The result is depicted in figure 6.1c on page 55.

read_image (Image, 'fuse')
sobel_amp (Image, EdgeAmplitude, 'thin_sum_abs', 3)

threshold (EdgeAmplitude, Region, 20, 255)

skeleton (Region, Skeleton)

6.1.3 Extended Concept

6.1.3.1 Use Region Of Interest

Edge extraction can be sped up by using a region of interest. The more the region in which edge filtering is
performed can be restricted, the faster and more robust the extraction will be.

For detailed information see the description of this method on page 25.

6.1 Edge Extraction Using Edge Filters 57

Visualize Results

Process Edges

Extract Edges

Filter Image

Use Region Of Interest

Acquire Image(s)

6.1.3.2 Filter Image

HALCON offers a wide range of edge filters. One of the most popular filters is the Sobel filter. This is the best
of the old-fashioned filters. It combines speed with a reasonable quality. The corresponding operators are called
sobel_amp and sobel_dir.

In contrast, edges_image provides the state of the art of edge filters. This operator is actually more than just
a filter. It includes a thinning of the edges using a non-maximum suppression and a hysteresis threshold for the
selection of significant edge points. It also returns the edge direction and the edge amplitude very accurately, which
is not the case with the Sobel filter. This operator is recommended if higher quality is more important than a longer
execution time. If the images are not noisy or blurred, you can even combine accuracy and speed by using the
mode ’sobel_fast’ inside edges_image. The corresponding operator to find edges in multi-channel images,
e.g., a color image, is edges_color.

6.1.3.3 Extract Edges

The easiest way to extract the edges from the edge amplitude image is to apply threshold to select pixels with a
high edge amplitude. The result of this step is a region that contains all edge points. With skeleton, these edges
can be thinned to a width of one pixel. As an advanced version for threshold, hysteresis_threshold can be
used to eliminate insignificant edges. A further advanced option is to call the operator nonmax_suppression_dir
before skeleton, which in difficult cases may result in more accurate edges. Note that in order to use this operator
you must have computed the edge direction image.

In contrast, the advanced filter edges_image already includes the non-maximum suppression and the hysteresis
threshold. Therefore, in this case a simple threshold suffices to extract edges that are one pixel wide.

If only the edge points as a region are needed, the operator inspect_shape_model can be used. Here, all steps
including edge filtering, non-maximum suppression, and hysteresis thresholding are performed in one step with
high efficiency.

6.1.3.4 Process Edges

If you want to extract the coordinates of edge segments, split_skeleton_lines is the right choice. This operator
must be called for each connected component (result of connection) and returns all the control points of the line
segments. As an alternative, a Hough transform can be used to obtain the line segments. Here, the operators
hough_lines_dir and hough_lines are available. You can also convert the edge region into XLD contours by
using, e.g., the operator gen_contours_skeleton_xld. The advantage of this approach is the extended set of
operators offered for XLD contour processing on page 79, e.g., for contour segmentation, feature extraction, or
approximation.

E
dg

e
E

xt
ra

ct
io

n
I

58 Edge Extraction (Pixel-Precise)

You can extract the regions enclosed by the edges easily using background_seg. If regions merge because of
gaps in the edges, the operators close_edges or close_edges_length can be used in advance to close the gaps
before regions are extracted. As an alternative, morphological operators like opening_circle can be applied to
the output regions of background_seg. In general, all operators described for the method Process Regions on
page 36 can be applied here as well.

6.1.3.5 Visualize Results

Finally, you might want to display the images, the edges (regions), and the line segments.

For detailed information see the description of this method on page 223.

6.1.4 Programming Examples

This section gives a brief introduction to using HALCON for edge filtering and edge extraction.

6.1.4.1 Aerial Image Interpretation

Example: %HALCONEXAMPLES%/solution_guide/basics/edge_segments.hdev

Figure 6.2 shows an image taken from an airplane. The task is to extract the edges of roads and buildings as a basis
for the image interpretation.

a) b)

Figure 6.2: (a) Extracting edges and (b) approximating them by segments.

The extraction of edges is very simple and reliable when using the operator edges_image. This operator returns
both the edge amplitude and the edge direction. Here, the parameters are selected such that a non-maximum
suppression (parameter value ’nms’) and a hysteresis threshold (threshold values 20 and 40) are performed. The
non-maximum suppression has the effect that only pixels in the center of the edge are returned, together with the
corresponding values for the amplitude and the direction. All other pixels are set to zero. Therefore, a threshold
with the minimum amplitude of 1 is sufficient here. As a preparation for the next step, the edge contour regions
are split up into their connected components.

read_image (Image, 'mreut')
edges_image (Image, ImaAmp, ImaDir, 'lanser2', 0.5, 'nms', 20, 40)

threshold (ImaAmp, Region, 1, 255)

connection (Region, ConnectedRegions)

The rest of the example program converts the region data into numeric values. To be more precise: the edges
are approximated by individual line segments. This is performed by calling split_skeleton_lines for each
connected component. The result of this call are four tuples that contain the start and the end coordinates of the
line segments. For display purposes, each of these line segments is converted into an XLD contour.

6.1 Edge Extraction Using Edge Filters 59

count_obj (ConnectedRegions, Number)

gen_empty_obj (XLDContours)

for i := 1 to Number by 1

select_obj (ConnectedRegions, SingleEdgeObject, i)

split_skeleton_lines (SingleEdgeObject, 2, BeginRow, BeginCol, EndRow, \

EndCol)

for k := 0 to |BeginRow| - 1 by 1

gen_contour_polygon_xld (Contour, [BeginRow[k],EndRow[k]], \

[BeginCol[k],EndCol[k]])

concat_obj (XLDContours, Contour, XLDContours)

endfor

endfor

dev_display (XLDContours)

6.1.4.2 Segmenting a Color Image

Example: %HALCONEXAMPLES%/hdevelop/Filters/Edges/edges_color.hdev

The task of this example is to segment the color image depicted in figure 6.3.

c)

b)

a)

Figure 6.3: (a) Original image; (b) extracted color edges, overlaid on the color image; (c) extracted gray value edges,
overlaid on the gray value image.

The example demonstrates the possibilities of a multi-channel edge filter. First, the gray value image is derived
from the color information to show that some object borders can no longer be seen. For example, the (green) soccer
field cannot be distinguished from the surrounding (red) track.

read_image (Image, 'olympic_stadium')
rgb1_to_gray (Image, GrayImage)

The color edge filter is applied and the edge amplitude is displayed. If you compare this to the filter result of the
gray image the difference can be easily seen.

edges_color (Image, ImaAmp, ImaDir, 'canny', 1, 'none', -1, -1)

edges_image (GrayImage, ImaAmpGray, ImaDirGray, 'canny', 1, 'none', -1, -1)

Finally, the edge segments are extracted for both the color and the gray image and overlaid on the original image.

E
dg

e
E

xt
ra

ct
io

n
I

60 Edge Extraction (Pixel-Precise)

edges_color (Image, ImaAmpHyst, ImaDirHyst, 'canny', 1, 'nms', 20, 40)

threshold (ImaAmpHyst, RegionColor, 1, 255)

skeleton (RegionColor, EdgesColor)

dev_display (Image)

dev_display (EdgesColor)

stop ()

edges_image (GrayImage, ImaAmpGrayHyst, ImaDirGrayHyst, 'canny', 1, 'nms', \

20, 40)

threshold (ImaAmpGrayHyst, RegionGray, 1, 255)

skeleton (RegionGray, EdgesGray)

dev_display (GrayImage)

dev_display (EdgesGray)

6.1.5 Relation to Other Methods

6.1.5.1 Alternatives to Edge Extraction Using Edge Filters

Blob Analysis (see description on page 33)
As an alternative to edge extraction, blob analysis can be used. This approach provides many methods from simple
thresholding to region growing and watershed methods.

6.1.6 Tips & Tricks

6.1.6.1 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many ways to
achieve this goal. Here the most common ones are listed.

• Regions of interest are the standard way to reduce the processing to only those areas where objects must be
inspected. This can be achieved using pre-defined regions but also by an online generation of the regions of
interest that depends on other objects found in the image.

• If high speed is important, the operators sobel_amp and inspect_shape_model are the preferred choice.

• By default, HALCON initializes new images. Using set_system(’init_new_image’, ’false’), this
behavior can be changed to save execution time.

6.2 Deep-Learning-Based Edge Extraction

Deep-learning-based edge extraction is a special use case of deep-learning-based semantic segmentation. Thus, the
model is a segmentation model designed and trained to extract edges. It comes with the advantages and drawbacks
of this approach. This said, the model allows wide variations in the application images without need for setting
changes. Further it can be retrained on custom applications just as any other segmentation model, shown in Specific
Edges (see section 6.2.2.2). As for every deep learning approach, the accuracy of the extracted edges cannot be
guaranteed. However, commonly, the results are satisfying for applications where a high precision is not required.

6.2.1 Concept

Deep-learning-based edge extraction is used the same way as other deep learning semantic segmentation models.
Thus, the requirements and workflow are as described in “Deep Learning . Semantic Segmentation”.

HALCON delivers a specific model designed and pretrained to extract edges. Such an application is shown in
Example: All Edges (see section 6.2.2.1).
But it is not guaranteed the model handles all kinds of specific problems as, e.g., low contrast and high noise
images, since the model is pretrained to generalize well. In such cases the model performance can be (often
significantly) improved by a retraining on application-specific images. An example is illustrated in Example:
Specific Edges (see section 6.2.2.2).

6.2 Deep-Learning-Based Edge Extraction 61

6.2.2 Programming Examples

This section shows examples using deep-learning-based edge extraction in HALCON.

6.2.2.1 Example: All Edges

Example: segment_edges_deep_learning.hdev
in %HALCONEXAMPLES%/hdevelop/Deep-Learning/Segmentation/

This example demonstrates the deep-learning-based edge extractor on low contrast and high noise images. The
task is to find the edges of the crosses. The result is depicted in figure 6.4.

Figure 6.4: Left: The image with the inferred edges (cyan).
Right: A zoomed part to make the cross and its edges better visible.

The edge extraction is done using a segmentation model pretrained_dl_edge_extractor.hdl. For this task,
we look for all edges and not specific ones. So it is generally not necessary to retrain the model and the task
corresponds to the part Inference on new images in the deep learning workflow of “Deep Learning . Semantic
Segmentation”.

Like every deep-learning-based segmentation model, every pixel of the input image gets a class assigned: edge or
background. Additionally, every assignment is done with a certain confidence. So taking all pixels assigned as
edge with a certain confidence results in edge regions. From this region the center can be extracted, e.g., using
skeleton. This center marks the edges visible in figure 6.4.

6.2.2.2 Example: Specific Edges

Example: segment_edges_deep_learning_with_retraining.hdev
in %HALCONEXAMPLES%/hdevelop/Deep-Learning/Segmentation/

This example demonstrates the deep-learning-based edge extractor on fabric images. The task is to find a specific
edge in the pattern. The result is depicted in figure 6.5.

The edge extraction is done using a segmentation model pretrained_dl_edge_extractor.hdl. We are not
interested in any edge but only in specific ones. So we have to teach the network how to find the specific edges
while ignoring unwanted ones. This is done by retraining the model. The workflow is described in the part
Training of the model of “Deep Learning . Semantic Segmentation”. Note, the images have been labeled
and preprocessed before.

The model returns the results in the same way as in segment_edges_deep_learning (see section 6.2.2.1), so the
postprocessing is done in a similar way.

E
dg

e
E

xt
ra

ct
io

n
I

62 Edge Extraction (Pixel-Precise)

Figure 6.5: Left: The labeled image with the marked edge to find (red).Right: The inferred edge (cyan).

Edge Extraction (Subpixel-Precise) 63

Chapter 7

Edge Extraction (Subpixel-Precise)

HALCON provides different ways to extract edges. There are the pixel-precise approaches of applying an edge
filter or a deep-learning-based semantic segmentation model (see Edge Extraction (Pixel-Precise) on page 55). In
addition, there are one-step operators that return subpixel-precise XLD contours. Besides this, not only edges but
also lines can be extracted. This approach can also be applied to color images.

The advantage of this approach is its ease of use, because only a single operator call is needed. Furthermore, the
accuracy and stability of the found contours is extremely high. Finally, HALCON offers a wide set of operators
for the post-processing of the extracted contours, which includes, e.g., contour segmentation and fitting of circles,
ellipses, and lines.

b)a)

Figure 7.1: Result of contour extraction: (a) edge contours, (b) line contours.

This chapter covers only the extraction of contours. For information about processing them see the method Contour
Processing on page 79.

7.1 Basic Concept

Extracting contours can easily be performed in a single step. Normally, no other operation is required.

7.1.1 Acquire Image(s)

First, an image is acquired as input for the process.

For detailed information see the description of this method on page 21.

7.1.2 Extract Edges Or Lines

HALCON offers various operators for the subpixel-accurate extraction of contours. The standard operator is based
on the first derivative. It takes the image as input and returns the XLD contours. When using the second derivatives,

E
dg

e
E

xt
ra

ct
io

n
II

64 Edge Extraction (Subpixel-Precise)

Process XLD Contours

Extract Edges Or Lines

Use Region Of Interest

Acquire Image(s)

first a Laplace operator must be executed before the contours along the zero crossings can be extracted. Besides
the gray-value-based methods, HALCON provides the latest technology for the extraction of color edges.

Besides the extraction of edges, HALCON provides operators for the extraction of lines. In other systems lines are
also called ridges. In contrast to edges, a line consists of two gray value transitions. Thus, a line can be considered
as two parallel edges.

7.1.3 A First Example

The following program explains the basic concept of edge extraction. The only operator needed to extract edge
contours is edges_sub_pix. It has the image as input and returns the XLD contours. Here, the filter ’lanser2’
is selected with a medium-sized smoothing mask. The low value for the parameter Low ensures that contours are
tracked even along low-contrast parts. To show that the result consists of multiple contours, the 12-color mode for
visualization is selected. The result is depicted in figure 7.1b on page 63.

read_image (Image, 'mreut4_3')
edges_sub_pix (Image, Edges, 'lanser2', 0.5, 8, 50)

dev_set_colored (12)

dev_clear_window ()

dev_display (Edges)

7.2 Extended Concept

In addition to the extraction, optional steps can be performed.

7.2.1 Radiometrically Calibrate Image(s)

To extract edges or lines with high accuracy, the camera should have a linear response function, i.e., the gray values
in the images should depend linearly on the incoming energy. Since some cameras do not have a linear response
function, HALCON provides the so-called radiometric calibration (gray value calibration): With the operator
radiometric_self_calibration you can determine the inverse response function of the camera (offline) and
then apply this function to the images using lut_trans before performing the edge and line extraction.

7.2.2 Use Region Of Interest

Edge extraction can be sped up by using a region of interest. The more the region in which edges or lines are
extracted can be restricted, the faster and more robust the extraction will be.

For detailed information see the description of this method on page 25.

7.2 Extended Concept 65

Visualize Results

Transform Results Into
World Coordinates

Process XLD Contours

Determine Contour
Attributes

Extract Edges Or Lines

Use Region Of Interest

Radiometrically Calibrate
Image(s)

Acquire Image(s)

7.2.3 Extract Edges Or Lines

The most often used operator for edge contour extraction is edges_sub_pix. You can select various filter methods
by specifying the corresponding name with the parameter Filter. For standard applications, common values are,
e.g., ’canny’ (based on a Gaussian convolution) or ’lanser2’. The advantage of ’lanser2’ is the recursive
implementation which has no increase in execution time when using a large smoothing. As a fast version the
parameter value ’sobel_fast’ can be used, which is recommended as long as the image is not noisy or blurred.

The operator zero_crossing_sub_pix can be used in combination with a filter like derivate_gauss with
parameter value ’laplace’. The Laplace operator is mainly applied in the medical area.

To extract edges in multi-channel images, e.g., in a color image, HALCON provides the operator
edges_color_sub_pix . Similar to edges_sub_pix, the parameter value ’sobel_fast’ is recommended for a
fast edge extraction as long as the image is not noisy or blurred.

The most commonly used operator for line extraction is lines_gauss. Compared to lines_facet it is more
robust and provides more flexibility. The width of lines that should be extracted is specified by the parameter
Sigma: The wider the line, the larger the value must be chosen. For very wide lines we recommend to zoom down
the image (zoom_image_factor) in order to reduce the overall execution time.

Like for edges, HALCON provides line extraction also for multi-channel images. The corresponding operator is
lines_color.

7.2.4 Determine Contour Attributes

The edge and line extraction operators not only provide the XLD contours but also so-called attributes. At-
tributes are numerical values; they are associated either with each control point of the contour (called contour
attribute) or with each contour as a whole (global contour attribute). The operators get_contour_attrib_xld
and get_contour_global_attrib_xld enable you to access these values by specifying the attribute name.

E
dg

e
E

xt
ra

ct
io

n
II

66 Edge Extraction (Subpixel-Precise)

The attribute values are returned as tuples of numbers. Typical attributes for edges are, e.g., the edge amplitude
and direction. For lines a typical attribute is the line width. The available attributes can be queried for a given
contour with query_contour_attribs_xld and query_contour_global_attribs_xld.

7.2.5 Process XLD Contours

Typically, the task is not finished by just extracting the contours and accessing the attributes. HALCON provides
further processing like contour segmentation, feature extraction, or approximation.

For detailed information see the description of this method on page 79.

7.2.6 Transform Results Into World Coordinates

In many applications the coordinates of contours should be transformed into another coordinate system, e.g., into
3D world coordinates. After you have calibrated your vision system, you can easily perform the transformation
with the operator contour_to_world_plane_xld. With this approach you can also eliminate lens distortions
and perspective distortions.

This is described in detail in the Solution Guide III-C in section 3.3 on page 76.

7.2.7 Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 223.

7.3 Programming Examples

This section gives a brief introduction to using HALCON for edge extraction.

7.3.1 Measuring the Diameter of Drilled Holes

Example: %HALCONEXAMPLES%/solution_guide/basics/rim_simple.hdev

Figure 7.2 shows an image of a car rim. The task is to measure the diameters of the drilled holes.

a) b) c)

Figure 7.2: (a) automatically determined ROIs; (b) extracted edges; (c) computed ellipses and diameters.

First, a segmentation step is performed to roughly find the borders of the holes. The actual edge extraction is then
performed only in these regions of interest (ROIs). This has two advantages: First, there are many edges in the
image that are of no interest for the measurement. By restricting the processing to ROIs you can easily select the
relevant objects. Secondly, the contour extraction is time-consuming. Thus, a reduced domain is an efficient way
to speed-up the process.

Locating the holes is quite easy: First, all dark pixels are selected. After selecting all those connected components
that are circular and have a certain size, only the holes remain. Finally, the regions of interest are obtained by
accessing the borders of the holes and dilating them. The resulting ROIs are depicted in figure 7.2a.

7.3 Programming Examples 67

threshold (Image, Dark, 0, 128)

connection (Dark, DarkRegions)

select_shape (DarkRegions, Circles, ['circularity', 'area'], 'and', [0.85, \

50], [1.0, 99999])

boundary (Circles, RegionBorder, 'inner')
dilation_circle (RegionBorder, RegionDilation, 6.5)

union1 (RegionDilation, ROIEdges)

Calling reduce_domain changes the domain of the image to the prepared region of interest. Now, the edge
extractor can be applied (see figure 7.2b).

reduce_domain (Image, ROIEdges, ImageROI)

edges_sub_pix (ImageROI, Edges, 'lanser2', 0.3, 10, 30)

The extracted contours are further processed to determine their diameter: With fit_ellipse_contour_xld,
ellipses are fitted to the contours. In other words, those ellipses are determined that fit the extracted
contours as closely as possible. The operator returns the parameters of the ellipses. With the operator
gen_ellipse_contour_xld, the corresponding ellipses are created and displayed (compare figure 7.2b and fig-
ure 7.2c). Another option is to use the operator gen_circle_contour_xld.

fit_ellipse_contour_xld (Edges, 'ftukey', -1, 2, 0, 200, 3, 2, Row, Column, \

Phi, Ra, Rb, StartPhi, EndPhi, PointOrder)

NumHoles := |Ra|

gen_ellipse_contour_xld (ContEllipse, Row, Column, Phi, Ra, Rb, \

gen_tuple_const(NumHoles,0), \

gen_tuple_const(NumHoles,rad(360)), \

gen_tuple_const(NumHoles,'positive'), 1)

The diameters can easily be computed from the ellipse parameters and then be displayed in the image using
write_string (see figure 7.2c).

for i := 0 to NumHoles - 1 by 1

write_string (WindowID, 'D1=' + 2 * Ra[i])

write_string (WindowID, 'D2=' + 2 * Rb[i])

endfor

7.3.2 Angiography

Example: %HALCONEXAMPLES%/hdevelop/Filters/Lines/lines_gauss.hdev

The task of this example is to extract the blood vessels in the X-ray image of the heart depicted in figure 7.3. The
vessels are emphasized by using a contrast medium. For the diagnosis it is important to extract the width of the
vessels to determine locally narrowed parts (stenoses).

The vessels are extracted using lines_gauss. The result of this operator are the centers of the vessels in the form
of XLD contours. Besides this, attributes are associated with the contour points, one of which is the local line
width. This width is requested and displayed as contours.

E
dg

e
E

xt
ra

ct
io

n
II

68 Edge Extraction (Subpixel-Precise)

a) b)

Figure 7.3: (a) X-ray image of the heart; (b) extracted blood vessels.

MaxLineWidth := 8

Contrast := 12

calculate_lines_gauss_parameters (MaxLineWidth, [Contrast,0], Sigma, Low, \

High)

lines_gauss (Angio, Lines, Sigma, Low, High, 'dark', 'true', 'parabolic', \

'true')
count_obj (Lines, Number)

for I := 1 to Number by 1

select_obj (Lines, Line, I)

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, 'angle', Angle)

get_contour_attrib_xld (Line, 'width_left', WidthL)

get_contour_attrib_xld (Line, 'width_right', WidthR)

RowR := Row + cos(Angle) * WidthR * sqrt(0.75)

ColR := Col + sin(Angle) * WidthR * sqrt(0.75)

RowL := Row - cos(Angle) * WidthL * sqrt(0.75)

ColL := Col - sin(Angle) * WidthL * sqrt(0.75)

disp_polygon (WindowID, RowL, ColL)

disp_polygon (WindowID, RowR, ColR)

endfor

7.4 Relation to Other Methods

7.4.1 Alternatives to Edge Extraction (Subpixel-Precise)

Subpixel Thresholding
Besides the subpixel-accurate edge and line extractors, HALCON provides a subpixel-accurate threshold operator
called threshold_sub_pix. If the illumination conditions are stable, this can be a fast alternative.

Subpixel Point Extraction
In addition to the contour-based subpixel-accurate data, HALCON offers subpixel-accurate point operators for
various applications. In the reference manual, these operators can be found in the chapter “Filters . Points”.

Structured Light 69

Chapter 8

Structured Light

The concept of structured light is to project known patterns onto an object and acquire images of the illuminated
surface. In HALCON there are two methods that use the structured light:

Deflectometry: Inspect specular or partially specular surfaces.

3D Reconstruction: Reconstruct a 3D object with non-specular (lambertian or diffuse) surfaces.

For both methods, the surface to be inspected is illuminated by a generated known structured light pattern. In case
of a non-planar surface the reflected pattern will be distorted like shown in figure 8.1.

a) b)

Figure 8.1: Pattern images: (a) known pattern, (b) reflected pattern.

While both deflectometry and 3D reconstruction make use of the structured light concept, there are decisive differ-
ences regarding object properties setup and application areas, compared in table 8.1:

Deflectometry 3D Reconstruction

Purpose detection of surface defects reconstruction of object surface

Surface specular or partially specular Lambertian or diffuse

Setup camera + projector + diffuser (figure 8.2 (1))
or camera + monitor (figure 8.2 (2))

camera and projector (figure 8.2 (3))

Table 8.1: Comparison of deflectometry and 3D reconstruction constraints.

Some example structured light setups are illustrated in figure 8.2.

For deflectometry applications structured light patterns are projected onto the surface by a projector and a diffusor
plate (figure 8.2 (1)) or a monitor (figure 8.2 2). Note, in parts not specific to a pattern source both, monitor and
projector with diffusor plate, are meant even if only one of them is mentioned. The specular or partially specular
surface reflects the pattern, which is then captured by a camera.
In case of using a projector as a pattern source for deflectometry, a diffuse emitting surface is required for generat-
ing a flat grid. Also, it is not suitable to point the projector directly onto the surface as the projector has a divergent

S
tr

uc
tu

re
d

Li
gh

t

70 Structured Light

beam. Compared to monitors, projectors will potentially offer a higher brightness, which is a key advantage for the
inspection of partially specular surfaces. Furthermore, depending on the technology they rely on, some projectors
provide a high frame rate, thus enabling the implementation of short inspection cycles.
Surface defects like dents deflect the light in such a way that monitor pixels which are far from each other appear
closer to each other in the reflected pattern and thus, in the captured camera image. Each camera pixel ’sees’ a
specific monitor pixel. The purpose of deflectometry is to detect which camera pixel ’sees’ which monitor pixel
and to analyze these correspondences to find defects.

(1) Camera setup with projector
and diffuser

(2) Camera setup with monitor (3) Camera setup with projector

Figure 8.2: Sketch of different structured light setups.

For 3D renconstruction applications light patterns are directly projected onto the surface by a projector (figure 8.2
(3)). As the object surface needs to be diffuse, light is not deflected but scattered. With the calibration data of
the camera and the projector, which is interpreted as an ’inverse’ camera, the points of the object surface are
reconstructed. Thereby, the angle between the camera and the projector’s line of sight should neither be too acute
nor extremely obtuse.

8.1 Basic Concept

Regardless of whether deflectometry or 3D reconstruction is performed the workflow consists basically of the
following parts:

Get Results

Decode Images

Acquire Images

Generate Pattern Images

Set Model Parameters

Create Structured Light
Model

8.2 Programming Examples 71

8.1.1 Create Structured Light Model

Firstly, you have to create the structured light model by the operator create_structured_light_model. The
model stores information that is successively added during the following steps.

8.1.2 Set Model Parameters

Next, the operator set_structured_light_model_param is used to set the parameters of the structured light
model. Note that these basic settings influence the results of the subsequent operators.

8.1.3 Generate Pattern Images

The pattern images are generated with gen_structured_light_pattern. There are four types of pattern im-
ages: Normalization images, Gray code images, phase shift images, and single stripe images. Information on the
different types of pattern images can be found in the HALCON Operator Reference.

8.1.4 Acquire Images

The reflected images are acquired for each pattern image that is displayed on the monitor and reflected by the
object toward the camera. For detailed information on image acquisition see the description of this method on
page 21. Recommendations on the image acquisition are listed in section 8.3.1.

8.1.5 Decode Images

Next, the acquired images need to be decoded with decode_structured_light_pattern to calculate which
monitor pixel corresponds to which camera pixel. The resulting correspondence images are stored in the structured
light model.

8.1.6 Get Results

Deflectometry:

Using the operator get_structured_light_object you can get a defect image in which high gray values usu-
ally indicate the presence of defects. Those defects can then be segmented, e.g., by thresholding using thresh-

old. We recommend to test some samples of the measuring object with defects and at least some without defects
to find a good threshold value. Note that the computation of the defect image depends on the model param-
eter ’derivative_sigma’, which controls the internal smoothing. This parameter must be set before calling
get_structured_light_object with ’defect_image’.

3D Reconstruction:

Using the operator reconstruct_surface_structured_light the reconstruction of the object surface can be
performed.

8.2 Programming Examples

This section gives a brief introduction to using HALCON for deflectometry.

8.2.1 Inspecting a Tap Collar

Example:

%HALCONEXAMPLES%/hdevelop/Inspection/Structured-Light/structured_light_tap_collar.hdev

The task of this example is to inspect the surface of a specular tap collar using deflectometry. For this, a struc-
tured light model of type ’deflectometry’ is created (create_structured_light_model) and the parameters

S
tr

uc
tu

re
d

Li
gh

t

72 Structured Light

necessary for the generation of the pattern images are defined. For example, the width ’PatternWidth’ and height
’PatternHeight’ of the pattern images should be equivalent to the width or height of the monitor used to display
the pattern images. Furthermore, the pattern type as well as the pattern orientation need to be defined in advance.
The stripe width of the projected pattern is set with ’min_stripe_width’. A smaller stripe width usually leads
to higher accuracy, but it should be chosen such that the smallest stripes are visible with distinct edges.

create_structured_light_model ('deflectometry', StructuredLightModel)

PatternWidth := 1600

PatternHeight := 1200

PatternType := 'gray_code_and_phase_shift'
PatternOrientation := 'both'
MinStripeWidth := 8

Normalization := 'global'
set_structured_light_model_param (StructuredLightModel, ['pattern_width', \

'pattern_height', 'pattern_type', \

'pattern_orientation', \

'min_stripe_width', 'normalization'], \

[PatternWidth,PatternHeight,PatternType, \

PatternOrientation,MinStripeWidth, \

Normalization])

Next, the pattern images are generated with gen_structured_light_pattern. Afterwards, the pattern images
are displayed one by one on the monitor. For each pattern image a camera image of the corresponding reflected
pattern is acquired with grab_image (see figure 8.3).

gen_structured_light_pattern (PatternImages, StructuredLightModel)

DirName := 'structured_light/tap_collar/'
open_framegrabber ('File', -1, -1, -1, -1, -1, -1, 'default', -1, 'default', \

-1, 'default', DirName, 'default', -1, -1, AcqHandle)

count_obj (PatternImages, NumberOfPatternImages)

gen_empty_obj (CameraImages)

for Index := 1 to NumberOfPatternImages by 1

select_obj (PatternImages, DisplayImage, Index)

dev_display (DisplayImage)

grab_image (CameraImage, AcqHandle)

concat_obj (CameraImages, CameraImage, CameraImages)

endfor

close_framegrabber (AcqHandle)

a) b)

Figure 8.3: Gray code patterns: (a) generated Gray code patterns, (b) reflected Gray code patterns. In this example
the horizontal stripes appear vertical in the camera image, because the camera was rotated by 90
degrees prior to the image acquisition. The same applies for the vertical stripes.

The next subtask is to decode the camera images. For that, the parameter ’min_gray_difference’ is set to the
expected gray value difference between white and dark stripes in the camera images. This parameter is necessary to
segment the object to be inspected, i.e., the image part in which the reflection of the pattern is visible. Depending on

8.2 Programming Examples 73

the value of ’min_gray_difference’, the reflective object is more or less distinguishable from the background
(see figure 8.4). We recommend to use sample images to determine the appropriate value for the minimal gray
value difference.

The camera images can now be decoded using the operator decode_structured_light_pattern. The resulting
correspondence images are extracted with get_structured_light_object.

MinGrayDifference := 130

set_structured_light_model_param (StructuredLightModel, \

'min_gray_difference', MinGrayDifference)

decode_structured_light_pattern (CameraImages, StructuredLightModel)

get_structured_light_object (CorrespondenceImages, StructuredLightModel, \

'correspondence_image')

a) b)

Figure 8.4: Correspondence images: a) min_gray_difference set to 15, b) min_gray_difference set to 130.

Finally, you can get a defect image with different values of ’derivative_sigma’. The parameter ’deriva-
tive_sigma’ controls the smoothing of the defect image and thus makes different kinds of defects more or less
visible like shown in figure 8.5. Note that the defect image is of type ’real’ and may have a very large gray value
range. For a visual inspection it may be helpful to scale the image using, e.g., scale_image_range.

Sigma := 1

set_structured_light_model_param (StructuredLightModel, 'derivative_sigma', \

Sigma)

get_structured_light_object (DefectImage1, StructuredLightModel, \

'defect_image')
scale_image_range (DefectImage1, ScaledDefectImage1, 0, 4)

b)a)

Figure 8.5: Defect images: a) ’derivative_sigma’ set to 1, b) ’derivative_sigma’ set to 5.

8.2.2 Inspecting a Partially Specular Surface

Example:

%HALCONEXAMPLES%/hdevelop/Inspection/Structured-Light/structured_light_partically_specular.hdev

S
tr

uc
tu

re
d

Li
gh

t

74 Structured Light

If a partially specular surface is inspected, the diffusive part of the reflection may lead to phenomenon shown in
figure 8.6.

a) b)

Figure 8.6: Images of a partially specular surface: a) bright stripe at the right edge, b) dark stripe at the right edge.

The stripe on the right is a bright stripe in image (a) and a dark stripe in image (b). But some gray values of the
dark stripe are actually larger than the gray values of the bright stripe, though it does not seem so for the human
observer. The algorithm will hence determine that these pixels are in a bright stripe in the second image (b) and in
a dark stripe in the first image (a), which leads to a wrong decoding. To avoid a wrong decoding, i.e. to optimize
the robustness in terms of varying surface reflectance, the ’pattern_type’ needs to be set to ’single_stripe’:

create_structured_light_model ('deflectometry', StructuredLightModelSS)

PatternType := 'single_stripe'
SingleStripeWidth := 64

set_structured_light_model_param (StructuredLightModelSS, ['pattern_width', \

'pattern_height', 'min_stripe_width', \

'min_gray_difference', 'pattern_type', \

'single_stripe_width', 'persistence'], \

[PatternWidth,PatternHeight, \

MinStripeWidth,MinGrayDifference, \

PatternType,SingleStripeWidth, \

Persistence])

The subsequent steps (image acquisition, decoding of camera images, etc.) are analogous to the procedure for
non-specular surfaces which is why those steps are not explained here. Please refer to section 8.2.1 for more
information. Instead, the following example images demonstrate the differences of using the pattern type ’sin-

gle_stripe’ compared to the pattern type ’gray_code_and_phase_shift’ in case of partially specular sur-
faces.

As can be seen in figure 8.7 a, the camera image is wrongly decoded if pattern_type is set to
’gray_code_and_phase_shift’. Consequently, it is not possible to detect defects within the wrongly decoded
region (figure 8.8 a). If, instead, the pattern_type is set to ’single_stripe’, the camera image is decoded
correctly (figure 8.7 b) and the defects are clearly visible (figure 8.8 b).

a) b)

Figure 8.7: Correspondence images: a) pattern_type set to ’gray_code_and_phase_shift’, b) pattern_type set
to ’single_stripe’.

8.3 Tips & Tricks 75

a) b)

Figure 8.8: Defect images: a) pattern_type set to ’gray_code_and_phase_shift’, b) pattern_type set to
’single_stripe’.

8.3 Tips & Tricks

8.3.1 Set Up the Measurement

If you want to achieve accurate results, please follow the recommendations given in this section:

• The resolution of the projector should at least be the same as the resolution of the camera

• The gray value range of the captured camera image should be exploited as fully as possible. I.e., in the ideal
case the gray values of the camera image would be near 0 if the screen is black while the gray values would
be near 255 (in case of byte camera images) if the screen is white.

• For some objects (e.g., white glossy plastic) it is difficult to get a good contrast between the stripes and the
background. In this case it helps to increase the gain value of the camera. Furthermore, when only a binary
pattern (e.g., gray code) is used, one can consider setting the camera gamma value to a value larger 1 in order
to increase the contrast.

• If you are using a color camera, choose the channel with the best contrast.

• The gray values of the camera image should depend nearly linearly on the gray val-
ues of the screen. This can be achieved with a radiometric calibration. See e.g.,
the HDevelop example program %HALCONEXAMPLES%/hdevelop/Calibration/Self-

Calibration/radiometric_self_calibration.hdev.

• There should be no overexposed regions if a completely white image is displayed on the screen (at least in
the image part where the measuring object is located).

• The camera should be focused on the object, but also the stripe patterns should be in focus. This means that
the depth of field of the camera should be high enough. In order to optimize the available depth of field,
consider positioning the screen closer to the object surface.

• As a rule of thumb concerning the minimal size of the defects in the camera image: As a minimum we
recommend one size being in the order of magnitude of 10 pixels.

• The stripe width of the projected pattern (’min_stripe_width’) should be chosen such that the smallest
stripes are visible with distinct edges in the camera image.

• The ambient light should be low, especially if objects are partially specular.

• The background behind the measuring object should be non-specular.

• The monitor or projector should be synchronized with the camera (see section 8.3.3.1).

• In the deflectometry case, arrange measuring object, camera, and pattern source such that the camera captures
the reflection of the screen that is visible in the whole surface part under inspection.
The angles of the camera and the monitor/diffusor plate should have similar absolute values. More precisely,
the angles mentioned are the angle between the camera viewing direction and the normal of the flat surface
(α) or the angle between the normal of the monitor/diffusor plate and the normal of the flat surface (β).

S
tr

uc
tu

re
d

Li
gh

t

76 Structured Light

See the illustration in figure 8.9. The sensitivity of the surface inspection can be improved if the mentioned
angles are increased. Nevertheless, this is a theoretical consideration and from a practical point of view a
modified setup may require a fairly larger monitor/diffusor plate.

camera
monitor / diffusor plate

surface

α β

Figure 8.9: Sketch of the angles of the camera and the monitor/diffusor plate.

• In the deflectometry case, the needed area size of the projected pattern (monitor/diffusor plate) depends on
the surface area and surface curvature to be inspected. The stronger the curvature the larger the projector
needs to be.

8.3.2 Check the Decoding Results

Decoding of camera images relies upon being able to know whether a pixel is in a region where a light stripe
is reflected or where a dark stripe is reflected. You can check whether the algorithm recognizes bright and dark
regions correctly by inspecting the ’binarized image’ obtained from get_structured_light_object. Note that
for this the ’persistence’ mode has to be enabled with set_structured_light_model_param before decoding.

An exemplary camera image (a) compared to its binarized image (b) is shown in figure 8.10. The white or black
regions in the binarized image indicate that the camera pixel observed reflections of white or black regions of the
projected pattern. The binarized image below shows white and dark regions that have been recognized correctly.

a) b)

Figure 8.10: Images of a tap collar: a) camera image, b) binarized image.

For comparison, figure 8.11 shows a partially specular surface and its corresponding binarized image. Several
pixels have been identified wrongly, i.e. some actually dark pixels have been identified as bright pixels. Therefore
dark regions of the camera image (a) are bright regions in the binarized image (b) which is an indication for
partially specular surfaces. To optimize the decoding results, we recommend the pattern type ’single_stripe’
in case of partially specular surfaces.

To help you deciding whether the bright or the dark regions were correctly encoded, you can use the
procedure structured_light_inspect_segmentation. This procedure helps to validate the decoded
bright or dark areas in the Gray code image in comparison to the bright or dark areas in the camera im-
age. The procedure can thus be used to find a suitable value for the parameter ’min_gray_difference’.
Please open the HDevelop program %HALCONEXAMPLES%/hdevelop/Inspection/Structured-

Light/structured_light_partically_specular.hdev for an example how to use this procedure.

8.3 Tips & Tricks 77

a) b)

Figure 8.11: Images of a partially specular surface: a) camera image, b) binarized image.

Another way to improve the reliability of the camera images is to use the procedure com-

pute_structured_light_modulation to compute the modulation image. A threshold operation can
than be applied to the modulation image to eliminate outliers. This approach is particularly useful for
3D reconstruction and is for instance shown in the example program %HALCONEXAMPLES%/hdevelop/3D-

Reconstruction/Structured-Light/structured_light_3d_surface_reconstruction.hdev.

8.3.3 Synchronize the Camera with the Pattern Source

The synchronization of the camera with the source generating the light pattern depends strongly on the source. The
two main cases are explained in the following.

8.3.3.1 Synchronize the Camera with the Monitor

Each pattern image needs to be already fully displayed on the monitor when the exposure time for the correspond-
ing camera image begins. Otherwise, (parts of) the previous pattern image may still be visible when a new camera
image is acquired. An example is shown in figure 8.12.

a) b)

Figure 8.12: Gray code patterns: a) previously displayed stripes still visible, b) only the currently displayed pattern
is visible.

A simple way to prevent overlapping patterns is to include a short waiting period after disp_image before
grab_image is called. The correct waiting period depends on the used setup and needs to be found by trial
and error.

For convenience, HALCON provides the procedure structured_light_camera_screen_sync that helps find-
ing a suitable waiting period. To use this procedure, the camera should be positioned such that it sees a large part
of the monitor where the pattern images are to be displayed. Alternatively, the camera can observe the reflection
of the monitor via a planar mirror. The procedure alternately displays images with vertical and horizontal stripes
and acquires the corresponding camera images. The waiting period between the call to disp_image and the call to
grab_image can be set by the user. In the camera images there should be no visible overlap of consecutive pattern
images as in figure 8.12 (a).

S
tr

uc
tu

re
d

Li
gh

t

78 Structured Light

Furthermore, you should check that each camera image shows the correct pattern. In a badly configured setup, a
camera image might be acquired while the previous pattern is still fully displayed. In that case, the n-th image
would show the (n-1)-th pattern image. If any of the these problems occur, a longer waiting period should be
tested. Otherwise, you can try whether a shorter waiting period is still sufficient.

8.3.3.2 Synchronize the Camera with the Projector

Projectors typically have a digital output for providing hardware triggers for cameras. As soon as an image is
displayed the projector emits a digital signal which can be used for synchronize acquiring the image by the camera.

8.3.4 Speed Up the Acquisition Process

For a more time-efficient acquisition process, the exposure of each camera image should be triggered the mo-
ment the corresponding pattern image is fully visible on the screen. We summarize two possible hardware-based
solutions:

Using a monitor: Position two photosensors on a small area of the monitor that is not reflected by the inspected
object towards the camera. The sensors should detect whenever the pixel values at their position switch from
black to white and trigger the camera at each detection.

Adapt the pattern images that are displayed on the monitor such that they alternate between white and
black pixel values in the area where the sensors are positioned. Whenever the area of the first sensor is
white, the area of the second sensor should be black and vice versa. This can be done using the operators
paint_region or overpaint_region.

This way, whenever a new pattern image is displayed on the monitor, one of the sensors sends a trigger signal
to the camera and the camera image is acquired at the right moment. As a monitor-refresh usually occurs
from the top to the bottom of the monitor, it is recommended to position the sensors at the bottom of the
display area. This should ensure that the sensor is not triggered before the pattern image is fully displayed.

Using a Projector: Industrial projectors have the advantage that the image projection can be realized faster com-
pared to structured light projection by standard TFT monitors. One reason for that is the long fade-out
characteristic of monitors. Another reason is that projectors typically have a digital output for providing
hardware triggers for cameras.

Contour Processing 79

Chapter 9

Contour Processing

One of HALCON’s powerful tool sets are the subpixel-accurate contours. Contours belong to the data type XLD.
These contours are typically the result of some kind of image processing and represent, e.g., the borders of objects.
Figure 9.1a shows such edges overlaid on the original image; Figure 9.1b zooms into the rectangular area marked
in Figure 9.1a and furthermore highlights the so-called control points of the contours with crosses. Here, you can
clearly see the highly accurate positioning of the control points.

HALCON provides operators to perform advanced types of measurements with these contours. For example,
the contours can be segmented into lines and circular or elliptic arcs (see Figure 9.1c). The parameters of these
segments, e.g., their angle, center, or radius, can then be determined and used, e.g., in the context of a measuring
task.

a) b) c)

Figure 9.1: XLD contours: (a) edge contours, (b) zoom into rectangular area, (c) segmented lines and elliptic arcs.

The advantage of contour processing is twofold: First, its high accuracy enables reliable measurements. Secondly,
the extensive and flexible set of operators provided for this data type enables you to solve problems that cannot
be solved with classical methods like 1D measuring. More detailed information about contour processing can be
found in the Solution Guide III-B.

9.1 Basic Concept

The processing of contours consists of multiple steps that can be combined in a flexible way.

9.1.1 Create XLD Contours

The most common way to create XLD contours is to apply one of the subpixel-accurate extraction operators
described for the method Extract Edges Or Lines on page 65. As an alternative, an edge filter with some post-
processing can be used. The resulting regions are then converted to XLD contours. Please note that this approach
is only pixel-accurate. For more information about this approach see the method Edge Extraction Using Edge
Filters on page 55.

C
on

to
ur

P
ro

ce
ss

in
g

80 Contour Processing

Extract Features

Perform Fitting

Process XLD Contours

Create XLD Contours

9.1.2 Process XLD Contours

Typically, only certain contours of an object are used for an inspection task. One possibility to restrict the extraction
of contours to the desired ones is to use a well-fitting region of interest as, e.g., depicted in figure 9.2a: The
rectangular ROI just covers the upper part of the blades. When applying an edge extractor, exactly one contour on
each side of the objects is found.

b)

c)

a)

Figure 9.2: Selecting the desired contours: (a) exactly fitting ROI, (b) too many contours because of too large ROI,
(c) result of post-processing the contours from (b).

In many cases, however, not only the desired contours are extracted. An example is depicted in figure 9.2b, where
the ROI was chosen too large. Thus, the contours must be processed to obtain the desired parts of the contours. In
the example, the contours are segmented into parts and only parallel segments with a certain length are selected
(see the result in figure 9.2c).

Another reason for processing contours occurs if the extraction returns unwanted contours caused by noise or
texture or if there are gaps between contours because of a low contrast or contour intersections.

9.1.3 Perform Fitting

Having obtained contour segments that represent a line, a rectangle, or a circular or elliptic arc, you can determine
the corresponding parameters, e.g., the coordinates of the end points of a line or the center and radius of a circle,
by calling one of the fitting operators. Their goal is to approximate the input contour as closely as possible to a
line, rectangle, or a circular or elliptic arc. Because the used minimization algorithms are very advanced and all
contour points are used for the process, the parameters can be calculated very reliably.

9.2 Extended Concept 81

9.1.4 Extract Features

From both raw contours and processed contour parts features can be determined. Some of these consider the
contour as a linear object. Others treat a contour as the outer boundary of an object. Obviously, the center of
gravity makes sense only for a closed object, whereas the curvature is a feature of a linear object.

9.1.5 A First Example

The following program is an example for the basic concept of contour processing. It shows how short segments
returned by the line extractor can be grouped to longer ones.

First, an image is acquired from file using read_image. The task is to extract the roads, which show up as thin
bright lines in the image. For this the operator lines_gauss is used. When we look at the result of the contour
extraction in figure 9.3a, we see that a lot of unwanted small segments are extracted. They can be suppressed easily
by calling select_contours_xld with a minimum contour length. A further problem is that some roads are
split into more than one segment. They can be combined with the operator union_collinear_contours_xld.
Looking at the result in figure 9.3b, we see that many fragments have been combined along straight road parts. In
curves this method fails because the orientation of the segments differs too much.

read_image (Image, 'mreut4_3')
lines_gauss (Image, Lines, 1.5, 2, 8, 'light', 'true', 'bar-shaped', 'true')
select_contours_xld (Lines, LongContours, 'contour_length', 15, 1000, 0, 0)

union_collinear_contours_xld (LongContours, UnionContours, 30, 2, 9, 0.7, \

'attr_keep')

a) b)

Figure 9.3: Processing XLD contours, (a) extracted contours, (b) processed contours.

9.2 Extended Concept

In addition to the standard contour processing, HALCON provides other tools that can be added. Typical examples
for these are camera calibration, geometric transformations, or type conversions. With these, the contour methods
can be integrated into the overall vision task.

9.2.1 Create XLD Contours

The standard method to create contours is to call a contour extraction operator. Contour extraction for edges is per-
formed with edges_sub_pix, edges_color_sub_pix, or zero_crossing_sub_pix. Lines are extracted using
lines_gauss, lines_facet, or lines_color. For subpixel blob analysis the operator threshold_sub_pix
can be used. These operators are described in more detail with the method Edge Extraction (Subpixel-Precise) on
page 63.

If pixel-accuracy is sufficient, you can use an edge filter (like sobel_amp or edges_image) or a line filter (like
bandpass_image) followed by thresholding and thinning. The resulting elongated regions are then converted into

C
on

to
ur

P
ro

ce
ss

in
g

82 Contour Processing

Visualize Results

Convert And Access XLD
Contours

Extract Features

Transform Results Into
World Coordinates

Perform Fitting

Process XLD Contours

Create XLD Contours

XLD contours with the operator gen_contours_skeleton_xld. For more information on this approach see the
method Edge Extraction Using Edge Filters on page 55.

Contours can also be synthesized from different sources, e.g., CAD data, user interaction, or measuring. Having
obtained the coordinates of the control points from such a source, the operators gen_contour_polygon_xld

and gen_contour_polygon_rounded_xld convert them to XLD contours. You can also draw XLD contours
interactively with the operators draw_xld and draw_xld_mod.

Finally, the border of regions can be converted into XLD contours. The corresponding operator is called
gen_contour_region_xld.

9.2.2 Process XLD Contours

The first method to segment contours is to call segment_contours_xld. This operator offers various modes:
Splitting into line segments, linear and circular segments, or linear and elliptic segments. The individual contour
segments can then be selected with select_obj and passed to one of the fitting operators described with the step
Perform Fitting on page 80. Whether a contour segment represents a line, a circular, or an elliptic arc can be
queried via the global contour attribute ’cont_approx’ using the operator get_contour_global_attrib_xld.

If only line segments are needed, you can use the combination of gen_polygons_xld followed by
split_contours_xld. The behavior is similar to using segment_contours_xld. The main difference is the
possible postprocessing: When applying gen_polygons_xld, a so-called XLD polygon is generated. This is a
different data type, which represents the initial step for grouping of segments to parallel lines.

An important step during contour processing is the suppression of irrelevant contours. This can be accomplished
with the operator select_shape_xld, which provides almost 30 different shape features. By specifying the
desired minimum and maximum value and possibly combining multiple features, contours can be selected very
flexibly. As an alternative, you can use the operator select_contours_xld, which offers typical features of
linear structures. Finally, the operator select_xld_point can be used in combination with mouse functions to
interactively select contours.

If there are gaps within a contour, the pieces are treated as separate objects, which makes further processing and
feature extraction difficult. You can merge linear segments with the operators union_collinear_contours_xld
or union_straight_contours_xld. Additionally, you can also merge adjacent contours
(union_adjacent_contours_xld), contours that lie on the same circle (union_cocircular_contours_xld),

9.2 Extended Concept 83

or contours that are cotangential (union_cotangential_contours_xld). To handle contours with a complex
shape you can first segment them into linear, circular, or elliptic segments (see above).

HALCON also provides an operator for general shape modifications: shape_trans_xld. With this operator you
can, e.g., transform the contour into its surrounding circle, convex hull, or surrounding rectangle. Further, for
closed contours or polygons, set theoretical operations can be applied to combine contours. For example, with
intersection_closed_contours_xld you can intersect the regions that are enclosed by the closed contours,
with difference_closed_contours_xld you can calculate the difference between the enclosed regions, or with
union2_closed_contours_xld you can merge the enclosed regions.

9.2.3 Perform Fitting

With the operator fit_line_contour_xld you can determine the parameters of a line segment. The operator
provides different optimization methods, most of which are suppressing outliers. It returns the coordinates of the
start and the end point of the fitted line segment and the normal form of the line. To visualize the results, you can
use the operator gen_contour_polygon_xld.

To fit a rectangle into a contour, the operator fit_rectangle2_contour_xld can be used. It provides various
optimization methods as well. The returned parameters comprise mainly the center position, the extent, and the
orientation of the rectangle. To generate the obtained rectangle for a visualization, you can use the operator
gen_rectangle2_contour_xld.

For the fitting of circular and elliptic segments the operators fit_circle_contour_xld and
fit_ellipse_contour_xld are available. They also provide various optimization methods. For a cir-
cular segment the center and the radius are returned together with the angle range of the visible part. In
addition, a second radius and the orientation of the main axis are returned for elliptic segments. To visualize
the results of both operators, you can use either the operator gen_ellipse_contour_xld or the operator
gen_circle_contour_xld.

9.2.4 Transform Results Into World Coordinates

As a post-processing step, it may be necessary to correct the contours, e.g., to remove lens distortions, or to
transform the contours into a 3D world coordinate system in order to extract dimensional features in world units.
Such a transformation is based on calibrating the camera. After the calibration, you simply call the operator
contour_to_world_plane_xld to transform the contours.

How to transform contours into world coordinates is described in detail in the Solution Guide III-C in section 3.3
on page 76.

9.2.5 Extract Features

HALCON offers various operators to access the feature values. Commonly used shape features are calcu-
lated by area_center_xld, compactness_xld, convexity_xld, eccentricity_xld, diameter_xld, and
orientation_xld. The hulls of the contours can be determined with smallest_circle_xld or small-

est_rectangle2_xld. Features based on geometric moments are calculated, e.g., by moments_xld.

9.2.6 Convert And Access XLD Contours

Finally, it might be necessary to access the raw data of the contours or to convert contours into another data type,
e.g., into a region.

You can access the coordinates of the control points with the operator get_contour_xld. It returns the row and
column coordinates of all control points of a contour in two tuples of floating-point values. In case of a contour
array (tuple), you must loop over all the contours and select each one using select_obj.

To convert contours to regions, simply call the operator gen_region_contour_xld. The operator paint_xld
paints the contour with anti-aliasing into an image.

The operators for edge and line extraction not only return the XLD contours but also so-called attributes.
Attributes are numerical values; they are associated either with each control point (called contour attribute)

C
on

to
ur

P
ro

ce
ss

in
g

84 Contour Processing

or with each contour as a whole (global contour attribute). The operators get_contour_attrib_xld and
get_contour_global_attrib_xld enable you to access these values by specifying the attribute name. More
information on this topic can be found in the description of the step Determine Contour Attributes on page 65.

9.2.7 Visualize Results

Finally, you might want to display the images and the contours.

For detailed information see the description of this method on page 223.

9.3 Programming Examples

This section gives a brief introduction to using HALCON for contour processing.

9.3.1 Measuring Lines and Arcs

Example: %HALCONEXAMPLES%/solution_guide/basics/measure_metal_part.hdev

The first example shows how to segment a contour into lines and (circular) arcs and how to determine the corre-
sponding parameters. Figure 9.4 shows the final result of the fitted primitives overlaid on the input image.

Figure 9.4: Fitted lines and circles.

As the initial step, the contours of the metal part are extracted using the operator edges_sub_pix. The resulting
contours are segmented into lines and circular arcs and sorted according to the position of their upper left corner.

edges_sub_pix (Image, Edges, 'lanser2', 0.5, 40, 90)

segment_contours_xld (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)

sort_contours_xld (ContoursSplit, SortedContours, 'upper_left', 'true', \

'column')

Then, lines and circles are fitted to the extracted segments. As already noted, the individual segments must be
accessed inside a loop. For this, first their total number is determined with count_obj. Inside the loop, the
individual segments are selected with the operator select_obj. Then, their type (line or circular arc) is determined
by accessing a global attribute with get_contour_global_attrib_xld. Depending on the result, either a circle
or a line is fitted. For display purposes, circles and lines are created using the determined parameters. Furthermore,
the length of the lines is computed with the operator distance_pp.

9.3 Programming Examples 85

count_obj (SortedContours, NumSegments)

for i := 1 to NumSegments by 1

select_obj (SortedContours, SingleSegment, i)

get_contour_global_attrib_xld (SingleSegment, 'cont_approx', Attrib)

if (Attrib == 1)

fit_circle_contour_xld (SingleSegment, 'atukey', -1, 2, 0, 5, 2, \

Row, Column, Radius, StartPhi, EndPhi, \

PointOrder)

gen_ellipse_contour_xld (ContEllipse, Row, Column, 0, Radius, \

Radius, 0, rad(360), 'positive', 1.0)

else

fit_line_contour_xld (SingleSegment, 'tukey', -1, 0, 5, 2, RowBegin, \

ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)

gen_contour_polygon_xld (Line, [RowBegin,RowEnd], [ColBegin,ColEnd])

distance_pp (RowBegin, ColBegin, RowEnd, ColEnd, Length)

endif

endfor

9.3.2 Close Gaps in a Contour

Example: %HALCONEXAMPLES%/solution_guide/basics/close_contour_gaps.hdev

The second example demonstrates how to close gaps in an object contour (see figure 9.5). The example is based
on synthetic data. Instead of using a real image, a light gray square on a dark gray background is generated and a
part of its boundary is blurred.

gen_rectangle1 (Rectangle, 30, 20, 100, 100)

region_to_bin (Rectangle, BinImage, 130, 100, 120, 130)

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

mean_image (ImageReduced, SmoothedImage, 15, 15)

paint_gray (SmoothedImage, BinImage, Image)

a) b)

Figure 9.5: Original edges and result of grouping process.

The extraction of contours with edges_sub_pix thus results in an interrupted boundary (see figure 9.5a). Note
that the edge extraction is restricted to the inner part of the image, otherwise edges would be extracted at the
boundary of the image.

rectangle1_domain (BinImage, ImageReduced, 20, 48, 40, 52)

edges_sub_pix (ImageReduced, Edges, 'lanser2', 1.1, 22, 30)

A suitable operator for closing gaps in linear segments is union_collinear_contours_xld. Before we can
apply this operator, some pre-processing is necessary: First, the contours are split into linear segments using seg-

ment_contours_xld. Then, regress_contours_xld is called to determine the regression parameters for each
segment. These parameters are stored with each contour and could be accessed with get_regress_params_xld.
Finally, union_collinear_contours_xld is called. Its result is depicted in figure 9.5b.

C
on

to
ur

P
ro

ce
ss

in
g

86 Contour Processing

segment_contours_xld (Edges, LineSegments, 'lines', 5, 4, 2)

regress_contours_xld (LineSegments, RegressContours, 'no', 1)

union_collinear_contours_xld (RegressContours, UnionContours, 10, 1, 2, 0.1, \

'attr_keep')

9.3.3 Calculate Pointwise Distance between XLD Contours

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/inspect_frame_width.hdev

The task of this example is to show how to inspect the camera frame of a phone housing by extracting edges and
calculating the pointwise distance between them (see figure 9.6).

Figure 9.6: Image of the camera frame of a phone together with the extracted and classified edges.

The program starts by first extracting edges within a reduced domain of the image.

threshold (Image, Region, 100, 255)

dilation_rectangle1 (Region, RegionDilation, 15, 15)

reduce_domain (Image, RegionDilation, ImageReduced)

edges_sub_pix (ImageReduced, Edges, 'canny', 0.7, 10, 60)

The contours are unified based on the distance between their end points. From the unified contours, only suffi-
ciently long contours are selected for further processing. These contours correspond to the inner border of the
camera frame and to the outer border of the camera frame, respectively.

union_adjacent_contours_xld (Edges, UnionContours, 7, 7, 'attr_keep')
select_shape_xld (UnionContours, SelectedContours, 'contlength', 'and', \

700, 99999)

9.3 Programming Examples 87

Then, the distance between the inner contour and the outer contour is calculated pointwise and the inner contour is
segmented based on the distance to the outer contour.

distance_contours_xld (InnerContour, OuterContour, \

OuterContourWithWidth, 'point_to_segment')
* Get the contour parts that lie outside of the tolerances

segment_contour_attrib_xld (OuterContourWithWidth, \

OuterContourPartToNarrow, 'distance', 'or', \

0, MinWidth)

segment_contour_attrib_xld (OuterContourWithWidth, \

OuterContourPartToWide, 'distance', 'or', \

MaxWidth, 10000)

9.3.4 Extract Roads

Example: %HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/roads.hdev

The task of this example is to extract the roads in the aerial image depicted in figure 9.7

a) b) c)

Figure 9.7: (a) Original image; (b) zoomed image part; (c) extracted roads.

The programs starts by first extracting lines on a reduced scale. These lines correspond very well to roads.

threshold (Image, Region, 160, 255)

reduce_domain (Image, Region, ImageReduced)

MaxLineWidth := 5

Contrast := 70

calculate_lines_gauss_parameters (MaxLineWidth, Contrast, Sigma, Low, High)

lines_gauss (ImageReduced, RoadCenters, Sigma, Low, High, 'light', 'true', \

'bar-shaped', 'true')

To eliminate wrong candidates, edges are extracted on a higher scale. For the road extraction it is assumed that
a road consists of two parallel edges with homogeneous gray values and a line segment in between. Using some
contour processing operators, this model is refined step by step.

C
on

to
ur

P
ro

ce
ss

in
g

88 Contour Processing

edges_image (ImagePart, PartAmp, PartDir, 'mderiche2', 0.3, 'nms', 20, 40)

threshold (PartAmp, EdgeRegion, 1, 255)

clip_region (EdgeRegion, ClippedEdges, 2, 2, PartWidth - 3, PartHeight - 3)

skeleton (ClippedEdges, EdgeSkeleton)

gen_contours_skeleton_xld (EdgeSkeleton, EdgeContours, 1, 'filter')
gen_polygons_xld (EdgeContours, EdgePolygons, 'ramer', 2)

gen_parallels_xld (EdgePolygons, ParallelEdges, 10, 30, 0.15, 'true')
mod_parallels_xld (ParallelEdges, ImagePart, ModParallelEdges, \

ExtParallelEdges, 0.3, 160, 220, 10)

combine_roads_xld (EdgePolygons, ModParallelEdges, ExtParallelEdges, \

RoadCenterPolygons, RoadSides, rad(40), rad(20), 40, 40)

9.4 Relation to Other Methods

9.4.1 Alternatives to Contour Processing

Line Processing
A very basic alternative to contour processing are the operators for line processing. In this context, lines are treated
as tuples of start and end points. The extraction can, e.g., be performed with detect_edge_segments. Of course,
XLD polygons can also be converted into this type of lines. Operators for processing this type of lines can be
found in the Reference Manual in the chapter “Tools . Lines”.

9.5 Advanced Topics

9.5.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images but an
infinite sequence of images showing objects, e.g., on a conveyor belt, have to be processed. In this case the end
of one image is the beginning of the next one. This means that contours that partially lie in both images must
be combined into one contour. For this purpose HALCON provides the operator merge_cont_line_scan_xld.
This operator is called after the processing of one image and combines the current contours with those of previous
images. For more information see Solution Guide II-A.

2D Matching 89

Chapter 10

2D Matching

The idea of matching is quite simple: In a training image a so-called template is presented. The system derives a
model from this template. This model is then used to locate objects that look “similar” to the template in search
images. Depending on the selected method, this approach is able to handle changes in illumination, clutter, varying
size, position, and rotation, or even relative movement of parts of the template.

The advantage of matching is its ease of use combined with great robustness and flexibility. Matching does not
require any kind of segmentation of the desired objects. By some of the matching methods, objects can be located
even if they are overlapped by other objects.

HALCON offers different methods for matching. The selection depends on the image data and the task to be
solved. This chapter offers an introduction to 2D matching. How to use the individual matching approaches is
described in detail in the Solution Guide II-B. For the search of 3D models, see the explanations to 3D matching
in Solution Guide I, chapter 11 on page 101.

The different 2D matching approaches:

• The correlation-based matching is based on gray values and a normalized cross correlation.

• The shape-based matching represents the state of the art in machine vision. Instead of using the gray values,
features along contours are extracted and used both for the model generation and the matching.

• The local deformable matching is similar to the shape-based matching, but here significant deformations can
be handled and returned. In particular, besides the position and score, the matching can return a rectified
version of the significant part of the search image, a vector field that describes the deformations, and the
deformed contours of the found model instance.

• The perspective deformable matching is also similar to the shape-based matching, but here also strong per-
spective deformations can be handled and instead of a 2D pose a 2D projective transformation matrix (ho-
mography) is returned. In addition, a calibrated version of the perspective deformable matching is available.
There, instead of a 2D projective transformation matrix (homography) the 3D pose of the object is returned.
Here, the focus is on the uncalibrated case. The calibrated case is described in more detail in the Solution
Guide II-B in section 3.4 on page 86.

• The descriptor-based matching has the same intention as the perspective deformable matching, i.e., the 2D
projective transformation matrix (homography) can be obtained for the uncalibrated case and the 3D pose
can be obtained for the calibrated case. The main difference is that points instead of contours are used to
create and find the model. Thus, it is especially suitable for highly textured objects but is not suitable for low
textured objects with rounded edges. Compared to the perspective deformable matching, it is significantly
faster for large search spaces but less accurate. Here, the focus is on the uncalibrated case. The calibrated
case is described in more detail in the Solution Guide II-B in section 3.5 on page 94.

Figure 10.1 gives an overview of the different 2D matching approaches and summarizes their characteristics in
order to help you to select the appropriate approach for your task.

M
at

ch
in

g

90 2D Matching

Search for 2D models (orthogonal view)

Correlation-based Matching

3 Invariant to defocus, slight shape deformations,
and linear illumination changes.

3 Works good for textured objects.
5 Does not work with clutter, occlusion, non-linear

illumination changes, scale, or multi-channel images.

Shape-based Matching

3 Invariant to clutter, occlusion, non-linear illumination changes,
scale, defocus, and slight shape deformations.

3 Works with multi-channel images.
3 Can be applied for multiple models simultaneously.
5 Is difficult with some textures.

Local deformable Matching
3 Invariant to clutter, occlusion, non-linear illumination changes,

scale, and local deformations.
3 Works with multi-channel images.

Search for 2D models (orthogonal or perspective view)

Perspective deformable
Matching

3 Invariant to clutter, occlusion, non-linear illumination changes,
scale, defocus, and perspective shape deformations.

3 Works with multi-channel images.
5 Is difficult with some textures.

Descriptor-based Matching

3 Invariant to clutter, occlusion, non-linear illumination changes,
scale, and perspective shape deformations.

5 Does not work without texture, in particular distinctive points,
and does not work with defocus or multi-channel images.

Figure 10.1: Overview strengths and weaknesses of the different 2D matching approaches.

10.1 Basic Concept

Matching is divided into the following parts:

Find Model

Create (Train) Model

Acquire Image(s)

10.1.1 Acquire Image(s)

Both for training and matching, first an image is acquired.

For detailed information see the description of this method on page 21.

10.1.2 Create (Train) Model

To create a matching model, first a region of interest that covers the template in the training image must be specified.
Only those parts of the image that are really significant and stable should be used for training. The input for the
training operator is the reduced image together with control parameters. The handle of the model is the output of
the training. The model will then be used for immediate search or stored to file.

10.2 Programming Examples 91

10.1.3 Find Model

Having created (or loaded) a model, it can now be used for locating objects in the image. Each method offers
specific methods to perform this task. If one or multiple objects are found, their poses (position, rotation, and
scaling) or 2D projective transformation matrices (homographies) together with a score are returned. These values
can already be the desired result or serve as input for the next step of the vision process, e.g., for aligning regions
of interest.

10.2 Programming Examples

This section gives a brief introduction to using HALCON for template matching. This is done by showing an
example for the basic concept and an example for each of the different 2D matching approaches mentioned.

10.2.1 A First Example

Example:
%HALCONEXAMPLES%/hdevelop/Matching/Shape-Based/find_generic_shape_model_workflow.hdev

This example shows all necessary steps mentioned in section 10.1 on page 90 from model generation to finding
the object using shape-based matching.

Figure 10.2: Finding the print in the image.

A training image is acquired from file and a model is created.

read_image (ReferenceImage, 'board/board_01')
create_generic_shape_model (ModelID)

A region is generated as region of interest (yellow in the image figure 10.2), covering the print in the im-
age. After reducing the image to the extent of the region, it is used as input for the training operator
train_generic_shape_model.

gen_rectangle1 (ROI, 450, 470, 580, 755)

reduce_domain (ReferenceImage, ROI, TrainingImage)

train_generic_shape_model (TrainingImage, ModelID)

The search parameters are set and the model is found in the images using find_generic_shape_model.

M
at

ch
in

g

92 2D Matching

set_generic_shape_model_param (ModelID, 'num_matches', 1)

set_generic_shape_model_param (ModelID, 'min_score', 0.6)

*

for i := 1 to 9 by 1

read_image (SearchImage, 'board/board_' + i$'02')
find_generic_shape_model (SearchImage, ModelID, MatchResultID, \

NumMatchResult)

* Retrieve iconic matching results.

get_generic_shape_model_result_object (Objects, MatchResultID, 'all', \

'contours')
* Visualization.

dev_display (SearchImage)

dev_display (Objects)

Text := 'Found instances'
dev_disp_text (Text, 'window', 12, 12, 'black', [], [])

wait_seconds (1)

endfor

10.2.2 Correlation-based Matching: Find Label in Texture

Example:
%HALCONEXAMPLES%/hdevelop/Matching/Correlation-Based/ncc_matching_workflow.hdev

This example shows how the operator find_ncc_model can be used to find instances without sharp edges. In
the presented application, the masks are checked whether their CE mark is visible, see figure 10.3. You can also
find more explanations to this example in Solution Guide II-B, section 3.1.1 on page 47 and to correlation-based
matching in general in Solution Guide II-B, section 3.1 on page 47.

Figure 10.3: Check whether the logo (yellow) is visible in the image.

An oriented NCC model of the logo is created.

gen_rectangle2 (ROI, 616.5, 708.5, rad(-82.4054), 50, 35)

reduce_domain (Image, ROI, ImageReduced)

create_ncc_model (ImageReduced, 'auto', rad(0), rad(360), 'auto', \

'use_polarity', ModelID)

On new images, the model can directly be searched. The found matches are conveniently visualized using a
visualization procedure.

for Index := 1 to NumImages by 1

read_image (Image, 'face_masks/face_mask_' + Index$'02')
find_ncc_model (Image, ModelID, rad(0), rad(360), 0.7, 1, 0.5, 'true', \

0, Row, Column, Angle, Score)

dev_display_ncc_matching_results (ModelID, Color, Row, Column, Angle, 0)

endfor

10.2 Programming Examples 93

Figure 10.4: Left: The prominent logo is used to create a model (yellow) to find the text to be recognized in a specified
region (green) on randomly oriented images. Right: The found text (colored) and the recognized text
(yellow).

10.2.3 Shape-based Matching: Align the Image to Read Text

Example: alignment_for_ocr_in_semiconductor.hdev in
%HALCONEXAMPLES%/hdevelop/Matching/Shape-Based/

The task of this example is to read text on randomly oriented images. In order to do so, a prominent logo is used
as matching model, see figure 10.4 on the left. This logo is always located in a fixed relation to the text area. So
the transformation of the logo is used to align the image. In the aligned image the text within the determined area
is recognized, see figure 10.4 on the right.

In a first step we read the reference image and define the regions to create the model and locate the text.

read_image (ReferenceImage, 'board/board_01')
gen_rectangle1 (ROIModel, 60, 535, 185, 900)

gen_rectangle1 (ROIText, 445, 585, 590, 765)

reduce_domain (ReferenceImage, ROIModel, ModelImage)

Now we can create the matching model and train it. Additionally the text model is created, which is only needed
for the additional task of text recognition.

create_generic_shape_model (ModelHandle)

train_generic_shape_model (ModelImage, ModelHandle)

create_text_model_reader ('auto', 'Industrial_0-9A-Z_Rej.omc', TextModel)

We need the reference transformation for the later alignment. We can extract it by finding the instance on the
reference image. Therefore we call the operator find_generic_shape_model already in the offline phase.

set_generic_shape_model_param (ModelHandle, 'num_matches', 1)

set_generic_shape_model_param (ModelHandle, 'min_score', 0.5)

find_generic_shape_model (ReferenceImage, ModelHandle, MatchResultID, \

Matches)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2DModel)

Now we created the needed models and we know the reference transformation. So we can go to the online phase.
We look for a match of the logo and extract its transformation. Together with the transformation of the reference
model we can align the image. In the aligned image we know the region in which we expect the text so we can
extract and recognize it.

M
at

ch
in

g

94 2D Matching

Figure 10.5: (left) “MVTec” logo used for the model creation; (right) deformed logo instance overlaid by the model
contours.

for i := 1 to 9 by 1

read_image (SearchImage, 'board/board_' + i$'02')
find_generic_shape_model (SearchImage, ModelHandle, MatchResultID, \

Matches)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2DMatch)

* Compute the transformation matrix.

hom_mat2d_invert (HomMat2DMatch, HomMat2DMatchInvert)

hom_mat2d_compose (HomMat2DModel, HomMat2DMatchInvert, \

TransformationMatrix)

affine_trans_image (SearchImage, ImageAffineTrans, TransformationMatrix, \

'constant', 'false')
get_generic_shape_model_result_object (InstanceObject, MatchResultID, \

'all', 'contours')
dev_display (InstanceObject)

reduce_domain (ImageAffineTrans, ROIText, ImageOCR)

find_text (ImageOCR, TextModel, TextResultID)

get_text_object (Characters, TextResultID, 'all_lines')
get_text_result (TextResultID, 'class', RecognizedText)

endfor

10.2.4 Local Deformable Matching: Find Deformed Logo

Example: find_local_deformable_model.hdev in
%HALCONEXAMPLES%/hdevelop/Matching/Deformable

In this example we locate differently deformed “MVTec” logos (see figure 10.5). You can also find more explana-
tions to this example in Solution Guide II-B, section 3.3.1 on page 77 and to local deformable matching in general
in Solution Guide II-B, section 3.3 on page 76.

First, the template is prepared. The colored image (figure 10.5, left) is transformed into a gray value image from
which an ROI, i.e., the template image (figure 10.5, left) is derived. The template image is then used to create a
model of the logo using create_local_deformable_model.

10.2 Programming Examples 95

Figure 10.6: From left to right: template image, corresponding part of the search image, rectified image.

create_mvtec_logo_broadened (LogoImage, 0, 200, Width, Height)

rgb1_to_gray (LogoImage, GrayImage)

gen_rectangle1 (Rectangle, 82, 17, 177, 235)

reduce_domain (GrayImage, Rectangle, ImageReduced)

create_local_deformable_model (ImageReduced, 'auto', [], [], 'auto', 1, [], \

'auto', 1, [], 'auto', 'none', \

'use_polarity', 'auto', 'auto', [], [], \

ModelID)

The created model is used to find instances of the logo in search images.

find_local_deformable_model (GrayImage, ImageRectified, VectorField, \

DeformedContours, ModelID, 0, 0, 1, 1, 1, 1, \

0.5, 1, 1, 4, 0.9, ['image_rectified', \

'vector_field', 'deformed_contours'], \

['deformation_smoothness', 'expand_border', \

'subpixel'], [Smoothness,0, 1], Score, Row, \

Column)

The position of the object in the image is returned. Additionally, iconic objects can be returned, e.g., a rectified
version of the part of the search image that corresponds to the bounding box of the ROI that was used to create
the model (see figure 10.6, right). But also the deformations can be visualized, see the example and its entry in
Solution Guide II-B in section 3.3.1 on page 77.

10.2.5 Perspective Deformable Matching: Locate Road Signs

Example:
%HALCONEXAMPLES%/hdevelop/Applications/Traffic-Monitoring/detect_road_signs.hdev

The task of this example is to locate road signs in images as depicted in figure 10.7. Available road signs comprise
the attention sign and the dead end road sign.

The example first reads a synthetic image that shows the model of an attention sign. The first chan-
nel of the model is accessed (access_channel) and zoomed (zoom_image_factor). Before calling cre-

ate_planar_uncalib_deformable_model to create the perspective deformable model, it is checked if the value
’3’ for the number of levels is suitable. For this, the operator inspect_shape_model is applied and the result is
checked visually. After the creation of the model, the model is stored in the tuple Models.

read_image (ImageAttentionSign, 'road_signs/attention_road_sign')
access_channel (ImageAttentionSign, Image, Channel[0])

zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, 'weighted')
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)

create_planar_uncalib_deformable_model (ImageZoomed, 3, [], [], 0.1, \

ScaleRMin[0], [], 0.05, \

ScaleCMin[0], [], 0.5, 'none', \

'use_polarity', 'auto', 'auto', [], \

[], ModelID)

Models := ModelID

Then, the image containing a dead end road sign is read and the corresponding model is created. Here, the model
is not available as artificial model but is derived from an image showing a typical street scenario. Thus, the

M
at

ch
in

g

96 2D Matching

Figure 10.7: A dead end road sign is located via uncalibrated perspective deformable matching.

processing of the image differs in parts from the proceeding used for the synthetic model. Among others, the
domain of the image is reduced to a rectangle containing the road sign . The model obtained from the call to
create_planar_uncalib_deformable_model is added to the tuple Models.

read_image (ImageDeadEnd, 'road_signs/dead_end_road_sign')
access_channel (ImageDeadEnd, Image, Channel[1])

gray_closing_shape (Image, ImageClosing, 5, 5, 'octagon')
zoom_image_factor (ImageClosing, ImageZoomed, 0.4, 0.4, 'weighted')
gen_rectangle1 (Rectangle1, 28, 71, 69, 97)

reduce_domain (ImageZoomed, Rectangle1, ImageReduced)

create_planar_uncalib_deformable_model (ImageReduced, 3, [], [], 0.1, \

ScaleRMin[1], [], 0.05, \

ScaleRMin[1], [], 0.1, 'none', \

'use_polarity', 'auto', 'auto', [], \

[], ModelID)

Models := [Models,ModelID]

To search for both models in unknown images, a rectangular ROI is created as search space. Within this ROI, the
procedure determine_area_of_interest automatically determines more specific regions of interest (ROI) for
the road signs using a blob analysis. Each model is searched in a specific channel of the image as the attention
sign can better be extracted in the blue channel and the dead end road sign is better extracted in the red channel.
The channels are specified at the beginning of the program inside the tuple Channel. The individual model is then
searched in the reduced image with find_planar_uncalib_deformable_model.

gen_rectangle1 (Rectangle, 115, 0, 360, 640)

for Index := 1 to 16 by 1

read_image (Image, 'road_signs/street_' + Index$'.02')
determine_area_of_interest (Image, Rectangle, AreaOfInterest)

reduce_domain (Image, AreaOfInterest, ImageReduced)

for Index2 := 0 to |Models| - 1 by 1

access_channel (ImageReduced, ImageChannel, Channel[Index2])

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], \

0, 0, ScaleRMin[Index2], \

ScaleRMax[Index2], \

ScaleCMin[Index2], \

ScaleCMax[Index2], 0.85, 1, \

0, 2, 0.4, [], [], HomMat2D, \

Score)

If a model could be found, i.e., if a 2D projective transformation matrix was returned, the 2D projective transfor-
mation matrix is used to project the contour of the specific model onto the found instance of the model inside the

10.2 Programming Examples 97

inspected image.

if (|HomMat2D|)

get_deformable_model_contours (ModelContours, Models[Index2], 1)

projective_trans_contour_xld (ModelContours, ContoursProjTrans, \

HomMat2D)

dev_display (ContoursProjTrans)

endif

endfor

endfor

10.2.6 Descriptor-based Matching: Locate Brochure Pages

Example:
%HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-2D/detect_brochure_pages.hdev

The task of this example is to locate different pages of a HALCON brochure as depicted in figure 10.8 using
descriptor-based matching.

Figure 10.8: Different pages of a HALCON brochure are located via descriptor-based matching.

First, images that contain models of the different pages of the brochure are read, converted into gray
value images, and their domains are reduced to a rectangular ROI. From this ROI, the operator cre-

ate_uncalib_descriptor_model creates a descriptor-based model for each model image. That is, the detector,
which extracts the interest points of the model, is selected (harris_binomial) and parameters for the descriptor,
which builds characteristic descriptions of the gray-value neighborhood of the interest points, are set.

RowRoi := [10, 10,Height - 10,Height - 10]

ColRoi := [10,Width - 10,Width - 10,10]

gen_rectangle1 (Rectangle, 10, 10, Height - 10, Width - 10)

for Index := 1 to NumModels by 1

read_image (Image, 'brochure/brochure_page_' + Index$'.2')
rgb1_to_gray (Image, ImageGray)

get_image_size (ImageGray, Width, Height)

reduce_domain (ImageGray, Rectangle, ImageReduced)

create_uncalib_descriptor_model (ImageReduced, 'harris_binomial', [], \

[], ['min_rot', 'max_rot', \

'min_scale', 'max_scale'], [-90, 90, \

0.2, 1.1], 42, ModelID)

The origin of each model is moved from the center of gravity of the model to the center of the rectangle
used to create the ROI. This is done with set_descriptor_model_origin so that the rectangle can be eas-
ily projected correctly onto the model when visualizing the results of the search in a later step. The adapted

M
at

ch
in

g

98 2D Matching

model is then stored in the tuple ModelIDs. The interest points extracted for each model are queried with
get_descriptor_model_points and the number of extracted points is stored in the tuple NumPoints.

set_descriptor_model_origin (ModelID, -Height / 2, -Width / 2)

ModelIDs := [ModelIDs,ModelID]

get_descriptor_model_points (ModelID, 'model', 'all', Row_D, Col_D)

NumPoints := [NumPoints,|Row_D|]

endfor

Now, the unknown images are read and transformed into gray value images. For each model, the operator
find_uncalib_descriptor_model searches for instances of the model in the image.

for Index1 := 1 to 12 by 1

OutputString := []

read_image (Image, 'brochure/brochure_' + Index1$'.2')
rgb1_to_gray (Image, ImageGray)

for Index2 := 0 to |ModelIDs| - 1 by 1

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \

'threshold', 600, \

['min_score_descr', \

'guided_matching'], [0.003, 'on'], \

0.25, 1, 'num_points', HomMat2D, \

Score)

If a valid 2D projective transformation matrix (homography) and a specific minimum score (that depends on the
number of the extracted interest points) was obtained by the search, the points of the model are queried with
get_descriptor_model_points and displayed by cross contours. Then, the rectangle specified for the cre-
ation of the model and its corner points are transformed with the 2D projective transformation matrix (projec-
tive_trans_region and projective_trans_pixel). The transformed corner points are used to calculate the
angle between two neighboring edges of the perspectively projected rectangle (angle_ll). In the model, the edges
are right angled. In the perspective deformed projection they should not deviate more than 20 degrees from the
right angle. Thus, only if an angle between 70 and 110 degrees is obtained, the found instance of the model is
accepted and the result is displayed.

if ((|HomMat2D| > 0) and (Score > NumPoints[Index2] / 4))

get_descriptor_model_points (ModelIDs[Index2], 'search', 0, Row, \

Col)

gen_cross_contour_xld (Cross, Row, Col, 6, 0.785398)

projective_trans_region (Rectangle, TransRegion, HomMat2D, \

'bilinear')
projective_trans_pixel (HomMat2D, RowRoi, ColRoi, RowTrans, \

ColTrans)

angle_ll (RowTrans[2], ColTrans[2], RowTrans[1], ColTrans[1], \

RowTrans[1], ColTrans[1], RowTrans[0], ColTrans[0], \

Angle)

if (Angle > 70 and Angle < 110)

area_center (TransRegion, Area, Row, Column)

disp_message (WindowHandle, 'Page ' + (Index2 + 1), \

'window', Row, Column, 'black', 'true')
endif

endif

endfor

endfor

10.3 Relation to Other Methods

10.3.1 Methods that are Using Matching

1D Measuring (see description on page 45)
OCR (see description on page 183)

10.3 Relation to Other Methods 99

Variation Model (see description on page 111)
Bar Code (see description on page 159)
The pose or 2D projective transformation matrix (homography) returned by the matching operators can be used
as the input for a so-called alignment. This means that either the position of an ROI is transformed relative to the
movement of a specified object in the image, or the image itself is transformed so that the pixels are moved to the
desired position.
A detailed description of alignment can be found in the Solution Guide II-B in section 2.5.3.2 on page 35.
For an example of using alignment as a preprocessing for 1D Measuring on page 45 see the description of
pm_measure_board.hdev on page 49. Further examples can be found in the description of the method Vari-
ation Model on page 111.

10.3.2 Alternatives to Matching

Blob Analysis (see description on page 33)
In some applications, the object to find can be extracted with classical segmentation methods. With the operators
area_center and orientation_region you can then determine its pose and use this information, e.g., to align
an ROI. With this approach, the execution time can be reduced significantly.
If the objects to be found appear only translated but not rotated or scaled, the morphological operators erosion1
and opening can be used as binary matching methods. Unlike in other vision systems, in HALCON these operators
are extremely fast.

M
at

ch
in

g

100 2D Matching

3D Matching 101

Chapter 11

3D Matching

The aim of 3D matching is to find a specific 3D object in search data and determine its pose, i.e., the position and
orientation of the object in space. For that, HALCON provides different approaches:

• For the shape-based 3D matching, a 3D shape model is generated from a 3D computer aided design
(CAD) model, which must be available in one of the supported formats that are listed in the description
of read_object_model_3d in the Reference Manual (e.g., DXF, PLY, or STL). The 3D shape model con-
sists of 2D projections of the 3D object seen from different views. Analogously to the shape-based matching
of 2D structures described in the chapter Matching on page 89, the 3D shape model is used to recognize
instances of the object in an image. But here, instead of a 2D position, orientation, and scaling, the 3D pose
of each instance is returned.

• For the surface-based 3D matching, a surface model is derived either from a CAD model that is available in
one of the supported formats that are listed in the description of read_object_model_3d in the Reference
Manual (e.g., DXF, PLY, or STL), or from a 3D object model that is available in OM3 format. The latter can
be obtained from images using a 3D reconstruction approach, e.g., stereo vision on page 215. In contrast to
shape-based 3D matching, the object is not searched within an image, but within a 3D scene that is available
as a 3D object model. Like shape-based 3D matching, surface-based 3D matching returns the 3D pose of
each instance of the object that can be located.

• The deformable surface-based 3D matching is similar to the above mentioned surface-based 3D matching,
but it can also find deformed 3D objects. In addition, it allows to define some special 3D points, e.g.,
grasping points, for the reference object. These points are called reference points. Once a (deformed) 3D
object has been found, the position of the reference points can be adapted to the deformations of the found
object to, e.g., grasp the deformed object.

If you need the 3D pose of a planar object or a planar object part, we recommend to use a calibrated perspective
matching approach instead of the 3D matching. Available approaches are the calibrated perspective deformable
matching and the calibrated descriptor-based matching. Both are significantly faster and more convenient to use.

Note that for the shape-based 3D matching as well as for the calibrated perspective deformable matching and the
calibrated descriptor-based matching a camera calibration is necessary. For the (deformable) surface-based match-
ing, the camera calibration is needed when acquiring the 3D object model(s) from images using a 3D reconstruction
approach.

The main focus of this section lies on 3D matching. For the calibrated perspective deformable matching and the
calibrated descriptor-based matching we refer to the Solution Guide II-B, section 3.3 on page 76 and section 3.5
on page 94. Note that the description here provides you with an overview on the 3D matching approaches. Further
details can be found in the Solution Guide III-C, section 4.2 on page 95 for shape-based 3D matching, section 4.3 on
page 104 for surface-based 3D matching, and section 4.4 on page 107 for deformable surface-based 3D matching,
as well as in the Reference Manual.

11.1 Basic Concept

3D matching consists of the following basic steps:

3D
M

at
ch

in
g

102 3D Matching

Figure 11.1: Shape-based 3D matching: (left) original image containing a clamp, (right) 3D model of the found clamp
projected in the image and display of its pose.

Find Approach-Specific
3D Model

Acquire Search Data

Create Approach-Specific
3D Model

Access 3D Object Model

11.1.1 Access 3D Object Model

Before creating the approach-specific 3D model, i.e., a 3D shape model or a surface model, the 3D object model
describing the object of interest must be accessed.

• For shape-based 3D matching the 3D object model is accessed with the operator read_object_model_3d.
Supported CAD formats are, e.g., DXF, PLY, or STL. The complete list can be found in the description of
the operator in the Reference Manual. The DXF format (DXF version AC1009, AutoCad release 12) may
consist of the DXF entities POLYLINE (Polyface meshes), 3DFACE, LINE, CIRCLE, ARC, ELLIPSE,
SOLID, BLOCK, and INSERT.

• For (deformable) surface-based 3D matching the 3D object model is accessed either from file using the
operator read_object_model_3d or by an online 3D reconstruction. If the 3D object model is accessed
from a file, besides the supported CAD formats also the OM3 format can be handled, which is a HALCON-
specific format that can be obtained, e.g., by an offline 3D reconstruction.

The description of read_object_model_3d in the Reference Manual provides additional tips on how to obtain a
suitable model.

11.1.2 Create Approach-Specific 3D Model

Having access to the 3D object model, the approach-specific 3D model can be created, which prepares the 3D
object model for the specific 3D matching approach.

11.1 Basic Concept 103

• For shape-based 3D matching, the operator create_shape_model_3d creates a 3D shape model. It is
generated by computing different views of the 3D object model within a user-specified pose range. The
views are obtained by placing virtual cameras around the object model and projecting the 3D object model
into the image plane of each camera position. The resulting 2D shape representations of all views are stored
in the 3D shape model. To avoid storage and runtime problems, the specified pose range should be restricted
as much as possible so that the number of 2D projections that have to be computed and stored in the 3D
shape model is minimized. To create the model views correctly, the camera parameters are needed. The
camera parameters can be obtained by a camera calibration. How to apply a camera calibration is described
in detail in the Solution Guide III-C, section 3.2 on page 61.

• For (deformable) surface-based matching, the operators create_surface_model and cre-

ate_deformable_surface_model, respectively, create a surface model by sampling the 3D object
model with a certain distance, so that for an approximate matching, which is the first of three steps the later
search consists of, only a reduced set of 3D points must be examined.

11.1.3 Acquire Search Data

If a shape-based 3D matching is applied, search images are acquired. For detailed information see the description
of this method on page 21.

If a (deformable) surface-based 3D matching is applied, the search space is not an image but a 3D scene that
is available as 3D object model, which can be obtained from images using a 3D reconstruction approach. An
overview on the available 3D reconstruction approaches is given in the Solution Guide III-C, chapter 1 on page 9.

11.1.4 Find Approach-Specific 3D Model

With the approach-specific 3D model that was created with create_shape_model_3d, cre-

ate_surface_model, or create_deformable_surface_model or that was read from file with
read_shape_model_3d, read_surface_model, or read_deformable_surface_model (see Re-use
Approach-Specific 3D Model on page 105), the object can be searched for in the search data, i.e., in im-
ages for shape-based 3D matching and in a 3D scene that is represented by a 3D object model for (deformable)
surface-based matching.

For the search, the operator find_shape_model_3d, find_surface_model, or
find_deformable_surface_model is applied. Several parameters can be set to control the search pro-
cess. For detailed information, we recommend to read the descriptions of the operators in the Reference Manual.
Both operators return the pose of the matched model instance and a score that describes the quality of the match.

11.1.5 A First Example

An example for this basic concept is the following program. It applies a shape-based 3D matching to locate clamps.

The DXF file containing the 3D model of the clamp shown in Figure 11.1 on page 102 is read with
read_object_model_3d.

read_object_model_3d ('clamp_sloped', 'mm', [], [], ObjectModel3DID, \

DxfStatus)

For the creation of a 3D shape model, the camera parameters are needed. They can be determined by a camera
calibration as described in the Solution Guide III-C, section 3.2 on page 61. Here, they are known and just assigned
to the variable CamParam.

gen_cam_par_area_scan_division (0.01221, -2791, 7.3958e-6, 7.4e-6, 308.21, \

245.92, 640, 480, CamParam)

The creation of the 3D shape model is applied using create_shape_model_3d. There, besides the camera pa-
rameters the following further parameters are needed: the reference orientation and the pose range in which the
object is expected, i.e., the minimum and maximum longitude and latitude, as well as the minimum and maximum

3D
M

at
ch

in
g

104 3D Matching

distance between the camera and the center of the object’s bounding box (which correspond to the radii of spheres
that are built to compute the virtual camera positions). The range for the camera roll angle is set to a full circle.
Further information about these parameters can be found in the Reference Manual and in the Solution Guide III-C,
section 4.2 on page 95.

create_shape_model_3d (ObjectModel3DID, CamParam, RefRotX, RefRotY, \

RefRotZ, 'gba', LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, 0, rad(360), DistMin, \

DistMax, 10, 'min_face_angle', MinFaceAngle, \

ShapeModel3DID)

The search images are acquired and the actual matching is applied in each image using the operator
find_shape_model_3d.

read_image (Image, 'clamp_sloped/clamp_sloped_' + ImageNo$'02')
find_shape_model_3d (Image, ShapeModel3DID, 0.7, 0.9, 5, ['num_matches', \

'pose_refinement'], [2, \

'least_squares_very_high'], Pose, CovPose, Score)

11.2 Extended Concept

Often, more than the essential steps are necessary. You can, e.g., store the approach-specific model into a file and
read it from another application to separate the creation of the model from the actual search process. These and
further advanced steps are described in the following sections.

Visualize Results

Find Approach-Specific
3D Model

Use Region Of Interest

Acquire Search Data

Re-use Approach-Specific
3D Model

Inspect Approach-Specific
3D Model

Create Approach-Specific
3D Model

Inspect 3D Object Model

Access 3D Object Model

11.2 Extended Concept 105

11.2.1 Inspect 3D Object Model

3D object models can be inspected using get_object_model_3d_params. Depending on the parameter specified
in GenParamName, you can query different attributes of the 3D object model like the number of points or the param-
eters of the bounding box. A procedure for the visualization of 3D object models (disp_object_model_3d) can
be found, e.g., with the HDevelop example program %HALCONEXAMPLES%/hdevelop/3D-Matching/Surface-

Based/find_surface_model.hdev.

11.2.2 Inspect Approach-Specific 3D Model

Similar to the 3D object model, you can query also the parameters for the approach-specific 3D model:

• The 3D shape model that was created with create_shape_model_3d can be inspected using
get_shape_model_3d_params. Several parameters like the reference orientation of the 3D object model,
the camera parameters, or the pose range used for the creation of the 3D shape model can be queried.

The contours of a specific view of the 3D shape model can be accessed with
get_shape_model_3d_contours. The contours can be used to visualize and rate the 3D shape
model and thus decide if certain parameters have to be adjusted within the search process using
find_shape_model_3d or if the creation of the 3D shape model has to be repeated with adjusted
parameters.

• The (deformable) surface model that was created with create_surface_model or cre-

ate_deformable_surface_model, respectively, can be inspected using get_surface_model_param or
get_deformable_surface_model_param, respectively. Several parameters like the center of the model
or the 3D points of the sampled model versions needed for different steps of the search process can be
queried.

11.2.3 Re-use Approach-Specific 3D Model

Because of the complex calculations, the creation of a 3D model can be rather time consuming. Thus, if you need
a 3D model more than once, it is recommended to store the approach-specific 3D model, especially the 3D shape
model that was created with create_shape_model_3d, into a file rather than to repeat the model creation. To
store the model into file you use the operator write_shape_model_3d for shape-based 3D matching, the operator
write_surface_model for surface-based 3D matching, and the operator write_deformable_surface_model
for deformable surface-based 3D matching. To read the 3D shape model or (deformable) 3D surface model from
file again to re-use the model in another application, you apply read_shape_model_3d, read_surface_model,
or read_deformable_surface_model, respectively.

11.2.4 Use Region Of Interest

When searching in images, i.e., when using shape-based 3D matching, the search can be sped up using a region
of interest. The more the region in which the objects are searched can be restricted, the faster and more robust the
search will be.

For detailed information see the description of this method on page 25.

11.2.5 Visualize Results

A typical visualization task for shape-based 3D matching is to use the operator project_object_model_3d
or project_shape_model_3d to project the outline of the 3D object model or the 3D shape model into the
image. For both operators, an object-camera pose is needed, which can be determined, e.g., by the operator
create_cam_pose_look_at_point. Another common visualization task is to display the pose that is obtained
by find_shape_model_3d.

A typical visualization task for surface-based 3D matching is to use the operator project_object_model_3d
and a known object-camera pose to project the outline of the 3D object model that is used as model into

3D
M

at
ch

in
g

106 3D Matching

an image. For example, if the 3D object model that is used as search data was reconstructed with a multi-
view stereo setup, the model can be projected into one of the used stereo images. This type of visualization
is applied, e.g., in the HDevelop example program %HALCONEXAMPLES%/hdevelop/Applications/Robot-

Vision/locate_pipe_joints_stereo.hdev. Another common visualization task is to display the 3D object
model that is used as model not in an image but within a 3D scene, e.g., within the 3D object model that is used
as search data. A procedure that allows to interactively inspect such a 3D scene (visualize_object_model_3d)
is provided with the HALCON installation as an external procedure. It is used, e.g., in the HDevelop example
program %HALCONEXAMPLES%/hdevelop/3D-Matching/Surface-Based/find_surface_model.hdev.

For deformable surface-based 3D matching it is easy to display the 3D object model that is used
as model within a 3D scene, e.g., within the 3D object model that is used as search data.
The operator find_deformable_surface_model returns a result handle from which the deformed
model can be retrieved with get_deformable_surface_matching_result. This is, e.g., shown
in the HDevelop example program %HALCONEXAMPLES%/hdevelop/3D-Matching/Deformable-Surface-

Based/find_deformable_surface_model.hdev.

For general information about visualizing results see the description of the method Visualization on page 223.

11.3 Programming Examples

This section shows how to use HALCON for 3D matching.

11.3.1 Recognize 3D Clamps and Their Poses in Images

Example: %HALCONEXAMPLES%/hdevelop/Applications/Position-Recognition-

3D/3d_matching_clamps.hdev

This example shows how to apply shape-based 3D matching to find a 3D object, in particular the clamp shown in
Figure 11.1 on page 102, in images. Besides the basic steps introduced in the first example, advanced steps are
applied and a procedure is provided that helps to interactively determine an appropriate pose range for the creation
of the 3D shape model.

At the beginning of the program, you can select by commenting or uncommenting the corresponding code lines
whether you want to use an already created 3D shape model or whether you want to create a new one. Further, the
camera parameters are assigned to a variable and the 3D object model of the clamps is loaded.

ReCreateShapeModel3D := false

* ReCreateShapeModel3D := true

gen_cam_par_area_scan_division (0.01221, -2791, 7.3958e-6, 7.4e-6, 308.21, \

245.92, 640, 480, CamParam)

read_object_model_3d ('clamp_sloped', 'mm', [], [], ObjectModel3DID, \

DxfStatus)

The procedure inspect_object_model_3d can now be used to interactively visualize the model, set the reference
pose, and determine further parameters for the creation of the 3D shape model. For example, selected images that
were acquired before calling the procedure can be succesively added to the visualization by selecting the buttons
Next Image or Previous Image. With the mouse, you can rotate the 3D object model and, after selecting the
mouse mode Move Image, move the underlying image so that the object model matches the image (see Figure 11.2
). The returned pose for each image can be added to the pose range by the button Add to Pose Range. When
leaving the procedure by selecting Exit, the procedure returns values for a pose range that can be used to create a
3D shape model.

gen_empty_obj (Images)

for Index := 1 to 3 by 1

read_image (Image, 'clamp_sloped/clamp_sloped_' + Index$'02')
concat_obj (Images, Image, Images)

endfor

inspect_object_model_3d (Images, ObjectModel3DID, CamParam, RefRotX, \

RefRotY, RefRotZ, LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, CamRollMin, CamRollMax, \

DistMin, DistMax, MinFaceAngle)

11.3 Programming Examples 107

Figure 11.2: Interactive determination of the reference pose and the pose range for the 3D matching of clamps.

Additionally, within the procedure a Hidden Line Removal mode can be selected and the minimum face angle
(Increase MinFaceAngle, Decrease MinFaceAngle) can be set. The latter is used, e.g., to suppress edges
that are needed to approximate curved structures in the 3D object model but do not appear in the image and thus
cannot be matched in the image (see Figure 11.3 on page 108).

Within the main procedure, the operator create_shape_model_3d creates a new 3D shape model if the vari-
able ReCreateShapeModel3D was set to true. For this, the parameters determined by the procedure described
above are used. The resulting 3D shape model is written into file using write_shape_model_3d. If an already
existing 3D shape model is used (ReCreateShapeModel3D set to false) and the procedure was used mainly for
visualization purposes, the existing 3D shape model is read from file using read_shape_model_3d.

if (ReCreateShapeModel3D)

create_shape_model_3d (ObjectModel3DID, CamParam, RefRotX, RefRotY, \

RefRotZ, 'gba', LongitudeMin, LongitudeMax, \

LatitudeMin, LatitudeMax, 0, rad(360), DistMin, \

DistMax, 10, 'min_face_angle', MinFaceAngle, \

ShapeModel3DID)

write_shape_model_3d (ShapeModel3DID, 'clamp_sloped_user.sm3')
else

read_shape_model_3d ('clamp_sloped_35.sm3', ShapeModel3DID)

endif

For the actual 3D matching, all images that contain the clamps are read and for each image the operator
find_shape_model_3d searches for instances of the 3D shape model in the image. With the resulting values,
the edges of the 3D shape model are projected into the image using project_shape_model_3d. The numerical
values of the pose are displayed using the procedure display_match_pose.

3D
M

at
ch

in
g

108 3D Matching

Figure 11.3: Different minimum face angles: (left) 8 degrees, (right) 45 degrees.

for ImageNo := 1 to 35 by 1

read_image (Image, 'clamp_sloped/clamp_sloped_' + ImageNo$'02')
find_shape_model_3d (Image, ShapeModel3DID, 0.7, 0.9, 5, ['num_matches', \

'pose_refinement'], [2, \

'least_squares_very_high'], Pose, CovPose, Score)

for I := 0 to |Score| - 1 by 1

PoseI := Pose[I * 7:I * 7 + 6]

CovPoseI := CovPose[I * 6:I * 6 + 5]

ScoreI := Score[I]

project_shape_model_3d (ModelContours, ShapeModel3DID, CamParam, \

PoseI, 'true', 0.523599)

display_match_pose (ShapeModel3DID, PoseI, WindowHandle)

endfor

endfor

Inside the procedure display_match_pose the reference point and the camera parameters are queried by
get_shape_model_3d_params to align the displayed strings in the image.

get_shape_model_3d_params (ShapeModel3DID, 'reference_point', \

ReferencePoint)

get_shape_model_3d_params (ShapeModel3DID, 'cam_param', CamParam)

pose_to_hom_mat3d (Pose, HomMat3D)

affine_trans_point_3d (HomMat3D, ReferencePoint[0], ReferencePoint[1], \

ReferencePoint[2], X, Y, Z)

project_3d_point (X, Y, Z, CamParam, Row, Column)

set_tposition (WindowHandle, Row, Column - 10)

write_string (WindowHandle, 'Pose:')
set_tposition (WindowHandle, Row + 15, Column)

write_string (WindowHandle, 'X: ' + (1000 * Pose[0])$'4.1f' + ' mm')
... etc. ...

11.3.2 Recognize Pipe Joints and Their Poses in a 3D Scene

Example: %HALCONEXAMPLES%/hdevelop/Applications/Robot-Vision/locate_pipe_joints_stereo.hdev

This example shows how to apply surface-based 3D matching to find a 3D object, in particular a pipe joint, in a
3D scene given as a 3D object model.

First, the model is accessed. It is available as a CAD model in PLY format and is accessed with
read_object_model_3d. From this 3D object model the corresponding surface model is created using cre-

ate_surface_model.

read_object_model_3d ('pipe_joint', 'm', [], [], PipeJointOM3DID, Status)

create_surface_model (PipeJointOM3DID, 0.03, [], [], PipeJointSMID)

11.3 Programming Examples 109

In the example, the 3D scene that builds the search data is accessed using multi-view stereo. Note that the following
code shows only a part of the stereo reconstruction. The rest is explained in section 20.3.2 on page 220. Figure 11.4
shows the images that are used to reconstruct one of the 3D scenes.

for Index := 1 to NumImages by 1

read_multi_view_stereo_images (Images, ImagePath, ImagePrefix, Index, \

NumCameras)

reconstruct_surface_stereo (Images, StereoModelID, PipeJointPileOM3DID)

Figure 11.4: Images used for the multi-view stereo reconstruction of the search data (3D scene).

The matching is applied with find_surface_model. It searches the surface model in the 3D scene and returns
the poses of the best matching model instances.

NumMatches := 5

Params := ['num_matches', 'pose_ref_scoring_dist_rel', \

'scene_normal_computation']
Values := [NumMatches,0.02, 'mls']

find_surface_model (PipeJointSMID, PipeJointPileOM3DID, 0.03, 0.05, \

MinScore, 'false', Params, Values, Poses, Scores, \

SurfaceMatchingResultID)

To visualize the result of each match the 3D object model that was accessed from the CAD model and that was
prepared for visualization is transformed with the pose that was returned for the specific match. The transformed
3D object model is then projected into one of the images that were used to reconstruct the 3D scene that was used
as search data (see figure 11.5).

dev_display (Img)

for MatchIndex := 0 to |Scores| - 1 by 1

rigid_trans_object_model_3d (PipeJointOM3DID, PoseObjInWorld, \

ObjectModel3DRigidTrans)

project_object_model_3d (ModelContours, ObjectModel3DRigidTrans, \

CamParam0, WorldPose0, ['data', \

'hidden_surface_removal'], ['faces', \

'true'])
dev_display (ModelContours)

endfor

3D
M

at
ch

in
g

110 3D Matching

Figure 11.5: Projection of the five best matches into one of the multi-view stereo images.

11.4 Relation to Other Methods

11.4.1 Alternatives to 3D Matching

Matching (calibrated perspective deformable)
If the 3D pose of planar objects or object parts are searched for, the calibrated perspective, deformable matching is
a fast alternative to 3D matching. There, no 3D model has to be provided, as only a 2D model is needed, which can
easily be obtained from training images. As no 2D projections of a 3D model are computed, the calibrated perspec-
tive, deformable matching is significantly faster than the shape-based 3D matching. The calibrated perspective,
deformable matching is described in the Solution Guide II-B in section 3.3 on page 76.

Matching (calibrated descriptor-based)
If the 3D pose of planar objects or object parts are searched for and the objects are textured in a way that distinctive
points can be extracted, the calibrated descriptor-based matching is even faster than the calibrated perspective,
deformable matching, especially for a large search space. On the other side, it is less accurate. The calibrated
descriptor-based matching is described in the Solution Guide II-B in section 3.5 on page 94.

Variation Model 111

Chapter 12

Variation Model

The main principle of a variation model is to compare one or more images to an ideal image to find significant
differences. With this, you can, e.g., identify incorrectly manufactured objects by comparing them to correctly
manufactured objects. The ideal image is often obtained by a training using several reference images. Besides the
ideal image, the training derives information about the allowed gray value variation for each point of the image.
This information is stored in a so-called variation image. Both images are used to create a variation model, to
which other images can be compared.

The advantage of the variation model is that images can be directly compared by their gray values and the compar-
ison is spatially weighted by the variation image.

12.1 Basic Concept

Variation Model mainly consists of the following parts:

Compare Variation Model

Prepare Variation Model

Train Variation Model

Align ROIs or Images

Create Variation Model

Acquire Image(s)

12.1.1 Acquire Image(s)

Both for the training and for the comparison, images are acquired.

For detailed information see the description of this method on page 21.

Va
ri

at
io

n
M

od
el

112 Variation Model

12.1.2 Create Variation Model

First, you have to create the variation model used for the image comparison by the operator cre-

ate_variation_model. It stores information that is successively added during the following steps.

12.1.3 Align ROIs or Images

For training the variation model, all training images must be placed in the same position and with the same orien-
tation. Thus, before training the model the objects must be aligned. Similarly, the images that are to be compared
to the variation model must be aligned.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

12.1.4 Train Variation Model

The variation model can be trained by providing a set of images containing good samples. The operator
train_variation_model uses the training images to calculate an ideal image and a corresponding variation
image. The variation image represents the amount of gray value variation, i.e., the tolerance, at every point of the
image.

If you do not want to train the model with multiple images, e.g., for memory reasons, you can also use a single
image as ideal image, but then you need knowledge about the spatial distribution of the variations. If you know,
e.g., that the acceptable tolerances are near the edges of your object, you can create the variation image by applying
an edge filter to the ideal image. For this proceeding, the training step is skipped.

12.1.5 Prepare Variation Model

To prepare the variation model for the image comparison, the ideal image and the variation image are converted into
two threshold images. If you have trained the model with several training images using train_variation_model,
you prepare the model with the operator prepare_variation_model. If you use a single image as ideal im-
age and create the corresponding variation image manually by filtering the ideal image, e.g., using sobel_amp,
edges_image, or gray_range_rect, you have to use prepare_direct_variation_model for the preparation
because the ideal image and the variation image are not yet connected to the variation model.

The obtained threshold images can be directly read out using the operator
get_thresh_images_variation_model.

12.1.6 Compare Variation Model

You compare an image to the prepared variation model with the operator compare_variation_model. There,
the two thresholds obtained during the preparation step (and stored in the variation model) are used to determine a
region containing all points of the image that significantly differ from the model. Extended parameter settings for
the comparison are available when using compare_ext_variation_model instead.

12.1.7 A First Example

Example: %HALCONEXAMPLES%/hdevelop/Applications/Print-Inspection/print_check.hdev

An example for this basic concept is the following program. Here, the logos on the pen clips depicted in figure 12.1
are inspected using a variation model. The model is trained successively by a set of images containing correct
prints. As the pen clips move from image to image, in each image the pen clip is located and aligned by shape-
based matching (see also chapter chapter 10 on page 89 for an introduction to shape-based matching and Solution
Guide II-B, section 2.5.3.3 on page 38 for further information about alignment using shape-based matching). After
the training, the variation model is prepared for the comparison with other images.

12.1 Basic Concept 113

b) c)

a)

Figure 12.1: Inspection of the logo that is printed on the pen clip: (a) training images; (b) accepted images; (c)
rejected images.

create_generic_shape_model (ShapeModelID)

train_generic_shape_model (ImageReduced, ShapeModelID)

find_generic_shape_model (ImageReduced, ShapeModelID, MatchResultID, \

Matches)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2DModel)

create_variation_model (Width, Height, 'byte', 'standard', VariationModelID)

for I := 1 to 15 by 1

read_image (Image, 'pen/pen-' + I$'02d')
find_generic_shape_model (Image, ShapeModelID, MatchResultID, \

NumMatchResult)

if (NumMatchResult == 1)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2DMatch)

hom_mat2d_invert (HomMat2DMatch, HomMat2DMatchInvert)

hom_mat2d_compose (HomMat2DModel, HomMat2DMatchInvert, \

TransformationMatrix)

affine_trans_image (Image, ImageTrans, TransformationMatrix, \

'constant', 'false')
train_variation_model (ImageTrans, VariationModelID)

endif

endfor

get_variation_model (MeanImage, VarImage, VariationModelID)

prepare_variation_model (VariationModelID, 20, 3)

During the inspection phase, also the images that are to be inspected are aligned by shape-based matching. Then,
the images are compared to the variation model to check the print for errors. The erroneous regions are extracted
and displayed.

Va
ri

at
io

n
M

od
el

114 Variation Model

find_generic_shape_model (Image, ShapeModelID, MatchResultID, \

NumMatchResult)

if (NumMatchResult == 1)

get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \

HomMat2DMatch)

hom_mat2d_invert (HomMat2DMatch, HomMat2DMatchInvert)

hom_mat2d_compose (HomMat2DModel, HomMat2DMatchInvert, \

TransformationMatrix)

affine_trans_image (Image, ImageTrans, TransformationMatrix, 'constant', \

'false')
reduce_domain (ImageTrans, RegionROI, ImageReduced)

compare_variation_model (ImageReduced, RegionDiff, VariationModelID)

connection (RegionDiff, ConnectedRegions)

select_shape (ConnectedRegions, RegionsError, 'area', 'and', 20, \

1000000)

endif

12.2 Extended Concept

Often more than the essential steps are necessary. In many cases, after the comparison, a visualization of the result
is required. Additionally, you might want to check the quality of the training or you need to save memory. The
advanced steps are described in the following sections.

Visualize Results

Compare Variation Model

Clear Training Data

Prepare Variation Model

Check Model Quality

Train Variation Model

Align ROIs or Images

Create Variation Model

Acquire Image(s)

12.2.1 Check Model Quality

After training a variation model with several images, the image of the ideal object and the corresponding variation
image can be queried by the operator get_variation_model to check if the images used for the training all

12.3 Programming Examples 115

contained similar objects. If the variation image contains large variations in areas that should exhibit no variations,
this leads to the conclusion that at least one of the training images contained a bad object.

12.2.2 Clear Training Data

After the preparation of the variation model, you can reduce the amount of memory needed for the variation model
by applying the operator clear_train_data_variation_model. But this is only recommended if you do not
need to use the variation model for anything else than for the actual comparison anymore. A further training or the
application of get_variation_model is not possible after deleting the training data.

12.2.3 Visualize Results

A typical visualization task is to display the image and mark the parts of the image that do not correspond to the
model. These parts can be explicitly extracted by applying connection to separate the connected components of
the region obtained by the image comparison and afterwards selecting the regions that are within a specific area
range by select_shape.

For detailed information see the description of this method on page 223.

12.3 Programming Examples

This section gives a brief introduction to using HALCON for variation model.

12.3.1 Inspect a Printed Logo Using a Single Reference Image

Example: %HALCONEXAMPLES%/solution_guide/basics/variation_model_single.hdev

This example inspects the same logo as the first example, but instead of training the variation model with multiple
images, a single image is used as ideal image.

From the ideal image a shape model is derived for the later alignment and the variation image is determined man-
ually (see also chapter chapter 10 on page 89 for an introduction to shape-based matching and Solution Guide
II-B, section 2.5.3.3 on page 38 for further information about alignment using shape-based matching). To obtain a
variation image with tolerances at the edges of the object, the edges in the domain of the corresponding region of
interest (ImageReduced) are extracted by the operator edges_sub_pix. These edges are converted into regions
and the regions are enlarged by a dilation to create a generic image that contains the slightly enlarged boundaries
of the object. As the conversion of subpixel-precise edges into pixel-precise regions leads to aliasing, the edges are
scaled before applying the conversion. After the region processing, the generic image is zoomed back to the origi-
nal size using a weighting function, which additionally smoothes the borders of the regions. A further smoothing
is realized by the operator binomial_filter. The image is used now as variation image (see figure 12.2) and the
variation model is prepared for the image comparison.

Va
ri

at
io

n
M

od
el

116 Variation Model

a) b)

c)

Figure 12.2: Model for the inspection of the pen clips: a) ideal image; b) variation image; c) inspected image with
displayed errors.

create_generic_shape_model (ShapeModelID)

set_generic_shape_model_param (ShapeModelID, 'contrast_low', 40)

set_generic_shape_model_param (ShapeModelID, 'contrast_high', 50)

train_generic_shape_model (ImageReduced, ShapeModelID)

set_generic_shape_model_param (ShapeModelID, 'min_contrast', 40)

set_generic_shape_model_param (ShapeModelID, 'angle_start', rad(-10))

set_generic_shape_model_param (ShapeModelID, 'angle_end', rad(10))

edges_sub_pix (ImageReduced, Edges, 'sobel_fast', 0.5, 10, 20)

hom_mat2d_identity (HomMat2DIdentity)

hom_mat2d_scale (HomMat2DIdentity, 4, 4, 0, 0, HomMat2DScale)

affine_trans_contour_xld (Edges, ZoomedEdges, HomMat2DScale)

gen_image_const (VarImageBig, 'byte', 4 * Width, 4 * Height)

count_obj (ZoomedEdges, NEdges)

for i := 1 to NEdges by 1

select_obj (ZoomedEdges, ObjectSelected, i)

get_contour_xld (ObjectSelected, RowEdge, ColEdge)

gen_region_polygon (Region1, RowEdge, ColEdge)

dilation_circle (Region1, RegionDilation, 2.5)

paint_region (RegionDilation, VarImageBig, VarImageBig, 255, 'fill')
endfor

zoom_image_size (VarImageBig, VarImageSmall, Width, Height, 'weighted')
binomial_filter (VarImageSmall, VarImage, 3, 3)

create_variation_model (Width, Height, 'byte', 'direct', VarModelID)

prepare_direct_variation_model (Image, VarImage, VarModelID, 15, 4)

During the inspection, in each image to be checked the boundary of the object is searched for to align
the image to the ideal image. The aligned image is then compared to the variation model using com-

pare_ext_variation_model. As the mode absolut is set, you can alternatively use the operator com-

pare_variation_model. Differing regions of a certain size are obtained and stored in NDefects.

12.3 Programming Examples 117

for i := 1 to 30 by 1

read_image (Image, 'pen/pen-' + i$'02d')
find_generic_shape_model (Image, ShapeModelID, MatchResultID, \

NumMatchResult)

if (NumMatchResult != 0)

get_generic_shape_model_result (MatchResultID, 'best', 'row', Row)

get_generic_shape_model_result (MatchResultID, 'best', 'column', \

Column)

get_generic_shape_model_result (MatchResultID, 'best', 'angle', \

Angle)

vector_angle_to_rigid (Row, Column, Angle, ModelRow, ModelColumn, 0, \

HomMat2D)

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', \

'false')
reduce_domain (ImageAffineTrans, LogoArea, ImageReduced1)

compare_ext_variation_model (ImageReduced1, RegionDiff, VarModelID, \

'absolute')
connection (RegionDiff, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 10, \

99999)

count_obj (SelectedRegions, NDefects)

endif

endfor

12.3.2 Inspect a Printed Logo under Varying Illumination

Example: %HALCONEXAMPLES%/solution_guide/basics/variation_model_illumination.hdev

This example inspects caps of bottles using a variation model (see figure 12.3). The difficulty here is the changing
illumination during the inspection. Like in the example described before, a single image is used as ideal image.

The variation model here is obtained by filtering the ideal image with the operator sobel_amp.

create_variation_model (Width, Height, 'byte', 'direct', VariationID)

sobel_amp (ModelImage, VarImage, 'sum_abs', 5)

prepare_direct_variation_model (ModelImage, VarImage, VariationID, [20, 25], \

[1.6, 1.6])

To compensate for the changing illumination, inside the procedure get_grayval_range the gray value range of
the variation model is determined.

get_grayval_range (ModelImage, RegionROI, RegionForeground, \

RegionBackground, BackgroundGVModel, ForegroundGVModel)

Inside the procedure the ideal image is reduced to the domain of the region of interest that encloses the print
on the cap. Then, the reduced image is split into foreground and background using binary_threshold and
difference. Finally, for both regions the mean and standard deviation of the gray values is queried by the
operator intensity.

reduce_domain (Image, RegionROI, ImageReduced)

binary_threshold (ImageReduced, RegionBackground, 'max_separability', \

'dark', UsedThreshold)

difference (RegionROI, RegionBackground, RegionForeground)

intensity (RegionForeground, Image, ForegroundGVal, DeviationFG)

intensity (RegionBackground, Image, BackgroundGVal, DeviationBG)

The inspection of the caps is realized inside the procedure inspect_cap.

inspect_cap (rImage, RegionROI, WindowHandle, ModelID, VariationID, \

RowModel, ColumnModel, BackgroundGVModel, \

ForegroundGVModel)

Va
ri

at
io

n
M

od
el

118 Variation Model

a) b)

c)

Figure 12.3: Model for the inspection of the caps: a) ideal image; b) variation image; c) results of image comparison
for images taken under different illumination conditions.

There, in each image the object is searched for and aligned as described in the previous example. Then, the
procedure get_grayval_range derives also the gray value range for the ROI of the object to be inspected, so that
the image can be adapted to the gray value range of the variation model before comparing it to the variation model.
Thus, also images that are taken under varying illumination can be compared. The mode for the image comparison
using the operator compare_ext_variation_model is set to light_dark, so that separate regions for too bright
and too dark image points are returned in RegionDiff.

get_grayval_range (ImageAffineTrans, RegionROI, RegionForegroundImage, \

RegionBackgroundImage, BackgroundImage, \

ForegroundImage)

Mult := (ForegroundGVModel - BackgroundGVModel) / (ForegroundImage - \

BackgroundImage)

Add := ForegroundGVModel - Mult * ForegroundImage

scale_image (ImageReduced, ImageScaled, Mult, Add)

compare_ext_variation_model (ImageScaled, RegionDiff, VariationID, \

'light_dark')

Classification 119

Chapter 13

Classification

Classification is the technical term for the assignment of objects to individual instances of a set of classes. The
objects as well as the available classes are described by specific features, e.g., the color of a pixel or the shape of a
region. To define the classes, the features have to be specified, e.g., by a training that is based on known objects.
After the training, the classifier compares the features of the object with the features associated to the available
classes and returns the class with the largest correspondence. Depending on the selected classifier, possibly addi-
tional information about the probabilities of the classes or the confidence of the classification is given.

Generally, two approaches for a classification of image data can be distinguished. One approach is based on a
pure pixel classification and segments images based on color or texture. The other approach is more general and
classifies arbitrary features, i.e., you can additionally classify regions based on region features like, e.g., shape,
size, or color. For the programming examples introduced here, the focus is on the first approach. Note that actually
the optical character recognition (OCR) provided by HALCON is a further classification approach, for which
specific operators are provided. But these are described in more detail in the chapter OCR on page 183.

HALCON provides different classifiers. The most important classifiers are the neural network (multi-layer per-
ceptron or MLP) classifier, the support vector machine (SVM) classifier, the Gaussian mixture model (GMM)
classifier, and the k-nearest neighbor (k-NN) classifier. Additionally, a box classifier is available, but as the GMM
classifier leads to comparable results and is more robust, here only the GMM classifier is described. Further, more
’simple’ classifiers can be used for image segmentation. These comprise the classifiers for two-dimensional pixel
classification with class_2dim_sup or class_2dim_unsup, and the n-dimensional pixel classification approach
based on hyper-spheres (class_ndim_norm), which can be used, e.g., for an euclidean classification. These ap-
proaches are less flexible, so the focus of this chapter is on the MLP, SVM, GMM, and k-NN classifiers. If you
want to use one of the ’simple’ classifiers, have a look at the corresponding examples.

To decide which classifier to use for a specific task and to choose suitable parameters for the selected classification
is rather challenging, as each classification task is different and thus needs different handling. HALCON provides
the operators to apply a classification, and this chapter provides some general hints about their usage. Further, the
most salient advantages and disadvantages of the different classifiers are summarized for the step Create Classifier,
and minor differences between the classifiers, which are related to individual operators, are stated with the cor-
responding step descriptions or in the corresponding sections of the Reference Manual. Nevertheless, in contrast
to other methods described in this manual, for classification no set of fixed rules for the selection of the suitable
classifier and the selection of the parameters can be given. In many cases, you have to try out different classifiers
for your specific task and with your specific training data. Independent on the selected approach, in almost any
case you have to play with the parameters to get a satisfying result. Allow extra time for tests and do not despair if
your first tests do not immediately lead to a satisfying result. Classification is complex!

13.1 Basic Concept

Classification consists of the following basic steps:

13.1.1 Acquire Image(s)

When classifying images, both for the generation of the training data and for the classification images must be
acquired.

C
la

ss
ifi

ca
tio

n

120 Classification

Classify Data

Train Classifier

Create Classifier

Acquire Image(s)

For detailed information see the description of this method on page 21.

13.1.2 Create Classifier

The first step of a classification is the creation of a new classifier. Here, you have to decide which classifier to
apply for your specific classification task. The main advantages and disadvantages of the four classifiers (assuming
an optimal tuning of the parameters) are as follows:

• Multi-Layer Perceptron: The MLP classifier leads to good recognition rates and is rather fast at classification.
In exchange, the training is not as fast as for the SVM classification, especially for huge training sets. If the
classification is time critical but the training can be applied offline, the MLP approach is a good choice. A
rejection class is returned, but in comparison to the GMM classifier, it may be influenced by outliers, so
that an additional, explicit training of a rejection class is recommended. Additionally, if you want to add
additional training samples, you should not append a second training, but repeat the training with both the
old and the new training samples.

• Support Vector Machines: Compared to the MLP classifier, the SVM classifier leads to slightly better recog-
nition rates and is faster at training, especially for huge training sets. Additionally, a training of new training
samples can be simply appended to a previous training. In exchange, the classification is not as fast as for
the MLP approach. A rejection class is not obtained automatically.

• Gaussian Mixture Models: The advantage of the GMM classification is that, controlled by the parameter
settings, a feature vector that does not match to one of the trained classes can be assigned to a rejection class.
Additionally, you can apply a second training that is appended to the first training, e.g., in order to add new
training samples. The disadvantage of the GMM classifier is that the recognition rates are not as good as the
recognition rates obtained by the MLP or SVM approaches. Further, for the feature vector a length of up to
15 features is recommended, whereas for the MLP and SVM classifiers a feature vector with 500 features is
still realistic.

• K-Nearest Neighbor: One advantage of the k-NN classifier is that it has only a few and very intuitive param-
eters. Also, the k-NN classifier works with very little training data. In principle, only a single sample per
class is sufficient to get reasonable results. The training of the k-NN classifier is the fastest of all classifiers.
That makes the k-NN classifier the first choice for automatic feature selection and quick evaluations. Disad-
vantages are that the classification is relatively slow and that the classification results are not as good as for
the SVM and MLP classifiers.

Dependent on the selected classification approach, you create the classifier using create_class_mlp, cre-
ate_class_svm, create_class_gmm, or create_class_knn.

When creating a classifier, the correct parameter settings are essential for the success of the later classification.
These are very specific for the different approaches. To name just a few, the parameter OutputFunction should
be set to ’softmax’ for an MLP classifier, as the classifier can also be used for regression and not only for
classification. Additionally, the value for the parameter NumHidden has to be adjusted very carefully. In contrast to
that, for the SVM approach, the parameter KernelType in most cases should be set to ’rbf’ and the values of the
parameters Nu and KernelParam strongly influence the classification result and thus should be carefully adjusted.
Further, different modes and specific algorithms for the preprocessing of the feature vector can be selected. For
details, see the corresponding operator descriptions in the Reference Manual and the Solution Guide II-D.

13.1 Basic Concept 121

13.1.3 Train Classifier

The training consists of two important steps: First, representative training samples, i.e., a set of feature vectors
for each class, are added to the classifier using the operator add_sample_class_mlp, add_sample_class_svm,
add_sample_class_gmm, or add_sample_class_knn. If you want to apply a pixel classification, i.e., you want
to segment images into regions of different color or texture, you can alternatively add the samples using the opera-
tors add_samples_image_class_mlp, add_samples_image_class_svm, add_samples_image_class_gmm,
or add_samples_image_class_knn. Then, you can immediately insert a single multi-channel image instead of
many feature vectors (one per pixel).

In a second step, the classifier is trained by train_class_mlp, train_class_svm, train_class_gmm, or
train_class_knn. Note that complex calculations are performed during the training. Thus, depending on the
number of training samples and some approach-specific influences, e.g., the size of the MLP used for an MLP
classification, the training can take from a few seconds to several hours.

13.1.4 Classify Data

For the general classification you use the operators classify_class_mlp, classify_class_svm, clas-

sify_class_gmm, or classify_class_knn. These use the trained classifier to return the classes that are most
probable for the feature vector of the data to classify. In most cases, you need only the best class. Then, you set the
parameter Num to 1. In a few cases, e.g., when working with overlapping classes, also the second best class may
be of interest (Num=2).

Like for the step of adding samples to the training, for a pixel classification, i.e., if an image is to be seg-
mented into regions of different color or texture classes, special operators are provided. For image segmentation,
you can use classify_image_class_mlp, classify_image_class_svm, classify_image_class_gmm, or
classify_image_class_knn. Again, these take images as input, instead of individual feature vectors for each
pixel, and return regions as output. Note that for images with a maximum of three channels, you can speed up the
image segmentation by using a classification that is based on look-up tables (LUT-accelerated classification). For
further information, please refer to the Solution Guide II-D in section 6.1.7 on page 70.

Besides the most probable classes, the GMM, MLP, and k-NN classifiers return additional values to evaluate the
results. The k-NN classifier returns a very intuitive rating that depends on the used classification method (e.g., the
minimal distance from the training sample). The GMM classifier returns the probabilities of the classes, and the
MLP classifier returns the confidence of the classification. Note that the probabilities for the GMM classification
are relatively precise, whereas for the confidence of the MLP classification outliers are possible because of the
way an MLP is calculated. For example, when classifying positions of objects (rows and columns build the
feature vectors), the confidence may be high for positions that are far from the training samples and low in case of
overlapping classes. For the SVM classification, no information about the confidence of the classification or the
probabilities of the returned classes are given.

13.1.5 A First Example

An example for this basic concept is the following program, which segments the image depicted in figure 13.1 into
regions of the three classes Sea, Deck, and Walls using a GMM pixel classification. Parts of the image that can
not be clearly assigned to one of the specified classes are returned as a rejection class region.

First, the image is read and the sample regions for the classes Sea, Deck, and Walls are defined and listed in the
tuple Classes.

read_image (Image, 'patras')
gen_rectangle1 (Sea, 10, 10, 120, 270)

gen_rectangle2 (Deck, [170,400], [350,375], [-0.56192,-0.75139], [64,104], \

[26,11])

union1 (Deck, Deck)

gen_rectangle1 (Walls, 355, 623, 420, 702)

concat_obj (Sea, Deck, Classes)

concat_obj (Classes, Walls, Classes)

Then, a new classifier of type Gaussian Mixture Model is created with create_class_gmm. The classifier works
for a feature vector with three dimensions (the three channels of the color image) and for three classes (Sea, Deck,

C
la

ss
ifi

ca
tio

n

122 Classification

a) b) c)

Figure 13.1: Segmentation of a color image: (a) original image, (b) sample regions for the classes Sea (light gray),
Deck (white), and Walls (gray), (c) regions returned by the classification (black marks the rejected
regions).

and Walls). The tuple containing the regions that specify each class to be trained is assigned as a set of samples
to the classifier using the operator add_samples_image_class_gmm. The samples are used now by the operator
train_class_gmm to train the classifier.

create_class_gmm (3, 3, [1,10], 'full', 'none', 2, 42, GMMHandle)

add_samples_image_class_gmm (Image, Classes, GMMHandle, 2.0)

train_class_gmm (GMMHandle, 500, 1e-4, 'uniform', 1e-4, Centers, Iter)

Then, the whole image is segmented by classify_image_class_gmm into regions of the three trained classes
and a rejection class, which consists of the parts that can not be assigned clearly to one of the trained classes. A
rejection class is returned automatically for GMM and MLP classification. For the MLP approach the rejection
class can be influenced by outliers, so it should be created explicitly like shown in the example %HALCONEXAM-

PLES%/hdevelop/Segmentation/Classification/classify_image_class_mlp.hdev.

classify_image_class_gmm (Image, ClassRegions, GMMHandle, 0.0001)

13.2 Extended Concept

When we look more closely at Classification, further operations can be applied. For example, the training samples
or the trained classifier can be stored to file to be re-used in a later step, or the trained classifier can be evaluated
further.

13.2.1 Train Classifier

If a classification does not lead to a satisfying result, one way to enhance the recognition rate is to add further
training samples to the classifier. For the SVM, GMM, and k-NN you can add new samples to the classifier and
train the classifier again, so that only those classes are trained again for which new training samples were added
(for details, see the corresponding sections in the Reference Manual). But if the run time of your application is not
critical, we recommend to train the classifier anew, using both the old and the new training samples. For the MLP
approach a new training should be applied in any case, as the result of appending a second training most likely is
not satisfying.

You may want to access the individual training samples if you have the suspicion that one of them is clas-
sified incorrectly. To do so, you apply the operators get_sample_class_mlp, get_sample_class_svm,
get_sample_class_gmm, or get_sample_class_knn. To get the number of available training samples,
the operators get_sample_num_class_mlp, get_sample_num_class_svm, get_sample_num_class_gmm, or
get_sample_num_class_knn can be applied.

If the training and the classification is applied in the same process, you can save memory by applying the operators
clear_samples_class_mlp, clear_samples_class_svm, or clear_samples_class_gmm after the training.
These clear the training samples from memory. This step is only recommended if you do not want to access the

13.2 Extended Concept 123

Visualize Results

Classify Data

Evaluate Classifier

Re-use Classifier

Re-use Training Samples

Train Classifier

Create Classifier

Acquire Image(s)

individual samples in a later step. If the training process and the actual classification is separated (see the step Re-
use Classifier), the clearing of the samples is not necessary as the training samples are not stored anyway (unless
you store them explicitly, see the step Re-use Training Samples).

For the SVM approach, you can use reduce_class_svm to reduce the number of support vectors after the training.
The returned classifier is faster than the originally used classifier.

13.2.2 Re-use Training Samples

In many cases it is necessary to access the samples used for the training in a later step, e.g., if you want to
repeat the training with some additional samples or if you want to access individual samples to check their cor-
rectness. In most applications, you will separate the offline training and the online classification. Thus, in the
classification phase the information about the individual samples is not implicitly available anymore. To never-
theless access the information, we recommend to write the used samples to file during the training phase with
the operators write_samples_class_mlp, write_samples_class_svm, or write_samples_class_gmm. To
read them from file again, you use the operators read_samples_class_mlp, read_samples_class_svm, or
read_samples_class_gmm.

13.2.3 Re-use Classifier

In most applications, you will separate the offline training and the online classification. At the end of the training
phase, you typically save the classifier to disk by write_class_mlp, write_class_svm, write_class_gmm, or
write_class_knn. To re-use it for the classification phase, you read the stored classifier by read_class_mlp,
read_class_svm, read_class_gmm, or read_class_knn.

If the training and the actual classification are separated, in the classification phase no information about the
creation and training of the classifier is present anymore. To nevertheless get information about the parame-
ters used for the creation of the classifier, the operators get_params_class_mlp, get_params_class_svm,
get_params_class_gmm, or get_params_class_knn can be applied. If a preprocessing was used for the fea-
ture vectors, which was specified with the creation of the classifier, you can also query the information con-
tent of the preprocessed feature vectors of the training samples. For this, you use get_prep_info_class_mlp,
get_prep_info_class_svm, or get_prep_info_class_gmm.

C
la

ss
ifi

ca
tio

n

124 Classification

13.2.4 Evaluate Classifier

After training a classifier, a feature vector can be evaluated. If you need only its most probable class,
or perhaps also the second best class, and the related probabilities or confidences, respectively, these are
returned also when applying the actual classification (see Classify Data). But if all probabilities are
needed, e.g., to get the distribution of the probabilities for a specific class (see the example description for
%HALCONEXAMPLES%/hdevelop/Classification/Neural-Nets/class_overlap.hdev in the Programming
Examples section), an evaluation is necessary. For the GMM approach, the evaluation with evaluate_class_gmm
returns three different probability values: the a-posteriori probability (stored in the variable ClassProb), the prob-
ability density, and the k-sigma error ellipsoid. For the MLP approach, the result of the evaluation of a feature
vector with evaluate_class_mlp is stored in the variable Result. The values of ClassProb and Result both
can be interpreted as probabilities of the classes. The position of the maximum value corresponds to the class
of the feature vector, and the corresponding value is the probability of the class. For the SVM classification, no
information about the confidence of the classification or the probabilities of the returned classes are given.

13.2.5 Visualize Results

Finally, you might want to display the result of the classification.

For detailed information see the description of this method on page 223.

13.3 Programming Examples

This section gives a brief introduction to using HALCON for classification.

13.3.1 Inspection of Plastic Meshes via Texture Classification

Example: %HALCONEXAMPLES%/hdevelop/Segmentation/Classification/novelty_detection_svm.hdev

This example shows how to apply an SVM texture classification in order to detect deviations from the training data
(novelties), in this case defects, in a textured material. The image depicted in figure 13.2 shows one of five images
used to train the texture of a plastic mesh and the result of the classification for a mesh with defects.

a) b)

Figure 13.2: Inspection of a plastic mesh: (a) (zoomed) training image with correct texture (region of interest marked
in white), (b) mesh with defects (texture novelties marked in white).

The program reads the first training image, defines a region of interest to avoid problems at the image border
that would occur because of the later used texture filters and the specific structure of the mesh, and then creates
the SVM classifier SVMHandle using create_class_svm. There, the mode ’novelty-detection’ is selected.
With this mode, feature vectors that are not contained in the training samples are classified as a new class. Thus,
novelties in the texture of the plastic mesh can be detected. For novelty detection, always the kernel type ’rbf’

has to be selected, but also for other modes it is recommended in most cases.

13.3 Programming Examples 125

read_image (Image, 'plastic_mesh/plastic_mesh_01')
gen_rectangle1 (Rectangle, 10, 10, Height / 2 - 11, Width / 2 - 11)

create_class_svm (5, 'rbf', 0.01, 0.0005, 1, 'novelty-detection', \

'normalization', 5, SVMHandle)

Then, all five training images are read in a loop, zoomed, and transformed into texture images by the procedure
gen_texture_image.

for J := 1 to 5 by 1

read_image (Image, 'plastic_mesh/plastic_mesh_' + J$'02')
zoom_image_factor (Image, ImageZoomed, 0.5, 0.5, 'constant')
gen_texture_image (ImageZoomed, ImageTexture)

The procedure creates a texture image as follows: Five different texture filters (texture_laws with different
filter types) are applied to the zoomed image and the resulting five images are used to build a five-channel image
(compose5). Additionally, the five-channel image is smoothed.

texture_laws (Image, ImageEL, 'el', 5, 5)

texture_laws (Image, ImageLE, 'le', 5, 5)

texture_laws (Image, ImageES, 'es', 1, 5)

texture_laws (Image, ImageSE, 'se', 1, 5)

texture_laws (Image, ImageEE, 'ee', 2, 5)

compose5 (ImageEL, ImageLE, ImageES, ImageSE, ImageEE, ImageLaws)

smooth_image (ImageLaws, ImageTexture, 'gauss', 5)

After the creation of each texture image, it is added as training sample to the classifier by
add_samples_image_class_svm.

add_samples_image_class_svm (ImageTexture, Rectangle, SVMHandle)

endfor

After all training samples were added to the classifier, the training is applied by train_class_svm. To enhance
the speed of the classification, the number of support vectors is reduced by reduce_class_svm, which leads to a
new classifier named SVMHandleReduced.

train_class_svm (SVMHandle, 0.001, 'default')
reduce_class_svm (SVMHandle, 'bottom_up', 2, 0.001, SVMHandleReduced)

Now, the images that have to be inspected are read in a loop. Each image is again zoomed and transformed into
a texture image. The image is reduced to the part described by the region of interest and the reduced image is
classified using the operator classify_image_class_svm with the reduced classifier SVMHandleReduced.

for J := 1 to 14 by 1

read_image (Image, 'plastic_mesh/plastic_mesh_' + J$'02')
zoom_image_factor (Image, ImageZoomed, 0.5, 0.5, 'constant')
gen_texture_image (ImageZoomed, ImageTexture)

reduce_domain (ImageTexture, Rectangle, ImageTextureReduced)

classify_image_class_svm (ImageTextureReduced, Errors, SVMHandleReduced)

The regions Errors that are returned by the classification and which describe the classes with the novelties, can
now be visualized in the image. For that, morphological operators are applied to smooth the borders of the error
regions, and connected components are extracted. Regions of a certain size are selected and the result of the texture
inspection is visualized as text. In particular, the texture of the mesh is classified as being good, if the number of
selected regions (NumErrors) is 0. Otherwise, the mesh is classified as being erroneous.

C
la

ss
ifi

ca
tio

n

126 Classification

opening_circle (Errors, ErrorsOpening, 3.5)

closing_circle (ErrorsOpening, ErrorsClosing, 10.5)

connection (ErrorsClosing, ErrorsConnected)

select_shape (ErrorsConnected, FinalErrors, 'area', 'and', 300, 1000000)

count_obj (FinalErrors, NumErrors)

if (NumErrors > 0)

disp_message (WindowHandle, 'Mesh not OK', 'window', 12, 12, 'red', \

'true')
else

disp_message (WindowHandle, 'Mesh OK', 'window', 12, 12, \

'forest green', 'true')
endif

if (J < 14)

disp_continue_message (WindowHandle, 'black', 'true')
endif

endfor

13.3.2 Classification with Overlapping Classes

Example: %HALCONEXAMPLES%/hdevelop/Classification/Neural-Nets/class_overlap.hdev

This artificial example shows how an MLP classification behaves for classes with overlapping feature vectors.
Three overlapping classes are defined by 2D feature vectors that consist of the rows and columns of region points.
The classes are depicted in figure 13.3.

c)b)a)

Figure 13.3: Three overlapping classes (feature vectors consist of rows and columns): (a) class1, (b) class 2, (c)
class 3.

The classes are created as follows: For each class, an elliptic region is generated. Then, noise is added to a generic
image, to which a threshold is applied to get three randomly distributed regions consisting of small dots. These
regions are intersected with the elliptic regions of the individual classes. The result is an elliptic cluster of small
dots for each class.

gen_ellipse (RegionClass1, 60, 60, rad(-45), 60, 40)

gen_ellipse (RegionClass2, 70, 130, rad(-145), 70, 30)

gen_ellipse (RegionClass3, 140, 100, rad(100), 55, 40)

gen_image_const (Image, 'byte', 200, 200)

add_noise_white (Image, ImageNoise1, 60)

add_noise_white (Image, ImageNoise2, 60)

add_noise_white (Image, ImageNoise3, 60)

threshold (ImageNoise1, RegionNoise1, 40, 255)

threshold (ImageNoise2, RegionNoise2, 40, 255)

threshold (ImageNoise3, RegionNoise3, 40, 255)

intersection (RegionClass1, RegionNoise1, SamplesClass1)

intersection (RegionClass2, RegionNoise2, SamplesClass2)

intersection (RegionClass3, RegionNoise3, SamplesClass3)

For each elliptic cluster, the positions of the region points are obtained by get_region_points. Each position
builds a feature vector (Rows[j], Cols[j]) that is added to the training by add_sample_class_mlp. Then, the
classifier is trained with train_class_mlp.

13.3 Programming Examples 127

concat_obj (SamplesClass1, SamplesClass2, Samples)

concat_obj (Samples, SamplesClass3, Samples)

create_class_mlp (2, 5, 3, 'softmax', 'normalization', 1, 42, MLPHandle)

for Class := 0 to 2 by 1

select_obj (Samples, SamplesClass, Class + 1)

get_region_points (SamplesClass, Rows, Cols)

for J := 0 to |Rows| - 1 by 1

add_sample_class_mlp (MLPHandle, real([Rows[J],Cols[J]]), Class)

endfor

endfor

train_class_mlp (MLPHandle, 300, 0.01, 0.01, Error, ErrorLog)

After the training, the classifier is evaluated. To visualize the probabilities of the classes, we create a probability
image for each class. In a loop, the operator evaluate_class_mlp returns the probabilities for each pixel posi-
tion. The first value of the returned tuple shows the probability of the pixel to belong to class 1, the second value
shows the probability of the pixel to belong to class 2, etc. The probability value of each class is then used as
gray value for the corresponding probability image. Additionally, the result of the classification that is returned by
classify_class_mlp, i.e., the most probable class for each position, is visualized in a probability image. The
probability images showing the probabilities of the individual classes are depicted in figure 13.4. In figure 13.5a
the probabilities of the three classes are united into a three-channel (color) image with compose3. Figure 13.5b
shows the result of the classification, i.e., the most probable class for each position in the image.

gen_image_const (ProbClass1, 'real', 200, 200)

gen_image_const (ProbClass2, 'real', 200, 200)

gen_image_const (ProbClass3, 'real', 200, 200)

gen_image_const (LabelClass, 'byte', 200, 200)

for R := 0 to 199 by 1

for C := 0 to 199 by 1

Features := real([R,C])

evaluate_class_mlp (MLPHandle, Features, Prob)

classify_class_mlp (MLPHandle, Features, 1, Class, Confidence)

set_grayval (ProbClass1, R, C, Prob[0])

set_grayval (ProbClass2, R, C, Prob[1])

set_grayval (ProbClass3, R, C, Prob[2])

set_grayval (LabelClass, R, C, Class)

endfor

endfor

label_to_region (LabelClass, Classes)

compose3 (ProbClass1, ProbClass2, ProbClass3, Probs)

c)b)a)

Figure 13.4: Probabilities for the overlapping classes ("white"=most probable): (a) probability of class 1 (b) proba-
bility of class 2, (c) probability of class 3.

Similar examples, but with GMM and SVM classifiers instead of an MLP clas-
sifier are %HALCONEXAMPLES%/hdevelop/Classification/Gaussian-Mixture-

Models/class_overlap_gmm.hdev and %HALCONEXAMPLES%/hdevelop/Classification/Support-

Vector-Machines/class_overlap_svm.hdev. For the GMM example, additionally the k-sigma probability is
calculated for each feature vector. This can be used to reject all feature vectors that do not belong to one of the
three classes. For the SVM example, the importance of selecting suitable parameter values is shown. For SVM

C
la

ss
ifi

ca
tio

n

128 Classification

a) b)

Figure 13.5: Probabilities for each pixel: (a) probabilities of the individual classes composed to a three-channel
image, (b) confidences returned by the classification.

classification, especially the parameter value Nu, which specifies the ratio of outliers in the training data set, has to
be selected sufficiently (see figure 13.6).

c)b)a)

Figure 13.6: For SVM classification, the value for the parameter Nu has to be selected carefully: (a) Nu =0.01 (too
small, wrong classification), (b) Nu = 0.18 (still too small, overfitting), (c) Nu = 25 (good classification).

13.4 Relation to Other Methods

13.4.1 Methods that are Useful for Classification

Filtering
When applying a pixel classification, a preprocessing, in particular a filtering of the image may be convenient to
minimize problems like noise, texture, or overlaid structures. Operators like mean_image or gauss_filter can
be used to eliminate noise. A fast but slightly less perfect alternative to gauss_filter is binomial_filter.
The operator median_image is helpful for suppressing small spots or thin lines and gray value morphology can
be used to eliminate noise structures.

Region Of Interest (see description on page 25)
The concept of domains (the HALCON term for a region of interest) is useful for classification. Domains are used,
e.g., to restrict the classification to the image part that has to be classified. For an overview on how to construct
regions of interest and how to combine them with the image see the method Region Of Interest on page 25.

Texture Analysis (see description on page 143)
Texture analysis is a method for finding regular or irregular structures, e.g., on the surface of an object. For this not
only the single gray values but also a larger pixel neighborhood is used. HALCON provides filters that emphasize
or suppress specific textures. If your application includes objects with a textured surface it might be helpful to
apply texture analysis first before segmenting objects using pixel classifiers.

13.5 Tips & Tricks 129

13.4.2 Methods that are Using Classification

Color Processing (see description on page 131)
Classification is used for color processing. There, the feature vector for a pixel consists of the gray values connected
to each channel of the image. The classification of the pixels due to their color can then be used, e.g., to segment an
image into regions of different color classes. With the description of the color processing method you find the ex-
ample %HALCONEXAMPLES%/solution_guide/basics/color_pieces.hdev which uses an MLP classification
to check the completeness of colored game pieces.

OCR (see description on page 183)
Classification is used for optical character recognition (OCR). HALCON provides OCR-specific operators that
classify previously segmented regions of images into character classes. The OCR-specific operators are available
for the MLP, SVM, k-NN, and box classifier. The latter is not recommended anymore as MLP, SVM, and k-NN
are more powerful.

13.4.3 Alternatives to Classification

Blob Analysis (see description on page 33)
Classification is time consuming and rather complex to handle. Thus, it should be applied mainly if other methods
fail. One method that may also solve a classification problem is blob analysis. For example, scratches can be
separated from a surface by a classification, but in most cases a comparable result can be obtained also by a
segmentation of the image via blob analysis, which needs significantly less time and is easy to apply.

Matching (see description on page 89)
If 2D shapes with fixed outlines are to be classified, in many cases it is more convenient to apply a template
matching instead of a classification. A classification may be used if not only the shape but also the color or texture
of the object is needed to distinguish the objects of different classes.

Variation Model (see description on page 111)
If differences between images and a reference image are searched for, the variation model may be used. In contrast
to, e.g., template matching, images can be directly compared by their gray values and the comparison is spatially
weighted by the variation image.

13.5 Tips & Tricks

13.5.1 OCR for General Classification

The OCR-specific classification operators are developed for optical character recognition but are not limited to
characters. Actually, assuming a suitable training, you can classify any shape of a region with OCR. In some
cases, it may be more convenient to classify the shapes of regions using the OCR-specific operators instead of the
classification operators described here.

13.6 Advanced Topics

13.6.1 Selection of Training Samples

The quality of a classification depends not only on the selected parameters, but also on the set of training samples
used to train the classifier. Thus, for a good classification result, you should carefully select your training samples:

• Use as many training samples as possible.

• Use approximately the same number of samples for each class.

• Take care that the samples of a class show some variations. If you do not have enough samples with varia-
tions, you can artificially create more of them by slightly changing your available samples.

C
la

ss
ifi

ca
tio

n

130 Classification

Color Processing 131

Chapter 14

Color Processing

The idea of color processing is to take advantage of the additional information encoded in color or multispectral
images. Processing color images can simplify many machine vision tasks and provide solutions to certain problems
that are simply not possible in gray value images. In HALCON the following approaches in color processing can
be distinguished: First, the individual channels of a color image can be processed using standard methods like
blob analysis. In this approach the channels of the original image have to be decomposed first. An optional color
space transformation is often helpful in order to access specific properties of a color image. Secondly, HALCON
can process the color image as a whole by calling specialized operators, e.g., for pixel classification. Advanced
applications of color processing include lines and edges extraction.

b)a)

Figure 14.1: Simple color segmentation.

The example illustrated in figure 14.1 shows how to segment blue pieces of plasticine in a color image.

14.1 Basic Concept

Simple color processing, which is using the methods of blob analysis, mainly consists of three parts:

14.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 21.

14.1.2 Decompose Channels

In order to be able to process the individual channels, RGB color images have to be split up into a red, green, and
blue channel by using the operator decompose3.

C
ol

or
P

ro
ce

ss
in

g

132 Color Processing

Process Image (Channels)

Decompose Channels

Acquire Image(s)

14.1.3 Process Image (Channels)

Depending on the application, the individual channels can be processed using standard methods described in this
chapter. One of the most frequently used methods is blob analysis (see Blob Analysis on page 33).

14.1.4 A First Example

An example for this basic concept is the following program, which belongs to the example explained above.

Red Green Blue

Figure 14.2: Color image decomposed to its red, green, and blue channels.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3. The red and
green channels are subtracted from the blue channel using sub_image. The purpose of this process is to fade out
pixels with high values in the other channels, leaving pure blue pixels only. Using threshold, the blue pixels with
a certain intensity are selected.

read_image (Image, 'plasticine')
decompose3 (Image, Red, Green, Blue)

sub_image (Blue, Red, RedRemoved, 1, 0)

sub_image (RedRemoved, Green, RedGreenRemoved, 1, 0)

threshold (RedGreenRemoved, BluePixels, 10, 255)

14.2 Extended Concept

In many cases the processing of color images will be more advanced than in the above example. Depending on the
actual application, the order of the following steps may vary, or some steps may be omitted altogether.

14.2.1 Demosaick Bayer Pattern

If the acquired image is a Bayer image, it can be converted to RGB using the operator cfa_to_rgb. The encoding
type of the Bayer pattern (the color of the first two pixels of the first row) must be known (see figure 14.3).

14.2 Extended Concept 133

Visualize Results

Compose Channels

Classify Colors

Use Region Of Interest

Train Colors

Transform Color Space

Decompose Channels

Demosaick Bayer Pattern

Acquire Image(s)

GR R G

GR R G

BG G B

BG G B

encoding

Figure 14.3: Sample Bayer pattern and corresponding encoding.

14.2.2 Transform Color Space

The RGB color space is not always the most appropriate starting point to process color images. If this is the
case, a transformation to a different color space might be useful. HALCON supports many important color
spaces. Namely, the HSV and HSI color spaces are favorable to select distinct colors independent of their in-
tensity. Therefore, color segmentations in these color spaces are very robust under varying illumination. The
i1i2i3 color space qualifies for color classification, whereas the cielab color space is a close match to human
perception. Typical operators for color transform are trans_from_rgb and trans_to_rgb. The operators cre-
ate_color_trans_lut and apply_color_trans_lut are, however, faster for time-consuming transformations.
How time-consuming a transformation is, depends on both the color space and the used hardware. The example
%HALCONEXAMPLES%/hdevelop/Filters/Color/color_trans_lut.hdev shows how to use the "faster" op-
erators.

14.2.3 Train Colors

In order to do color classification the colors that need to be distinguished have to be trained. There are different
approaches for full color classification including, e.g., Gaussian mixture models (GMM), multilayer perceptron

C
ol

or
P

ro
ce

ss
in

g

134 Color Processing

(MLP), and support vector machine (SVM) classification. For further information about classification, see Classi-
fication on page 119.

14.2.4 Use Region Of Interest

Color processing can be sped up by using a region of interest. The more the region in which the segmentation is
performed can be restricted, the faster and more robust it will be.

For detailed information see the description of this method on page 25.

14.2.5 Classify Colors

The colors trained in the previous step are used in subsequent images to do the actual classification.

14.2.6 Compose Channels

Any number of channels can be joined to a multi-channel image using the operators compose2 through compose7,
or append_channel. This way, channels that were processed separately can be composed back to color images
for visualization purposes.

14.2.7 Visualize Results

Finally, you might want to display the images, the regions, and the features.

For detailed information see the description of this method on page 223.

14.3 Programming Examples

This section gives a brief introduction to using HALCON for color processing.

14.3.1 Robust Color Extraction

Example: %HALCONEXAMPLES%/solution_guide/basics/color_simple.hdev

The object of this example is to segment the yellow cable in a color image in a robust manner.

Figure 14.4: Segmentation of a specific color.

Here, an RGB image is acquired from file. The image is split into its channels using decompose3. Afterwards, a
color space transformation from RGB to HSV is performed using trans_from_rgb. This transformation converts
the image channels into the separate components hue, saturation and intensity. In the next steps the operator
threshold selects all pixels with a high saturation value, followed by reduce_domain in the hue channel which

14.3 Programming Examples 135

effectively filters out pale colors and grays. A histogram of the remaining saturated (vivid) colors is displayed in
figure 14.5. Each peak in this histogram corresponds to a distinct color. The corresponding color band is shown
below the histogram. Finally, the last threshold selects the yellowish pixels.

read_image (Image, 'cable' + i)

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, HighSaturation, 100, 255)

reduce_domain (Hue, HighSaturation, HueHighSaturation)

threshold (HueHighSaturation, Yellow, 20, 50)

Saturated Hues

Hue Saturation Value

yellow range

Figure 14.5: Segmentation in HSV color space.

Finding the proper threshold margins is crucial in applications like this. In HDevelop the Gray Histogram tool can
be used to determine the values interactively. See the HDevelop User’s Guide for more information. To generate
the color band shown in figure 14.5, use the following code snippet:

gen_image_gray_ramp (Hue, 0, 1, 128, 32, 128, 256, 64)

gen_image_proto (Hue, White, 255)

trans_to_rgb (Hue, White, White, Red, Green, Blue, 'hsv')
compose3 (Red, Green, Blue, MultiChannelImage)

14.3.2 Sorting Fuses

Example: %HALCONEXAMPLES%/solution_guide/basics/color_fuses.hdev

In this example different types of fuses are classified using color images. The applied method is similar to the
previous example. A training image has been used to specify ranges of hue for the fuse types that need to be
distinguished. The determined ranges are hard-coded in the program.

FuseColors := ['Orange', 'Red', 'Blue', 'Yellow', 'Green']
FuseTypes := [5, 10, 15, 20, 30]

* HueRanges: Orange 10-30, Red 0-10...

HueRanges := [10, 30, 0, 10, 125, 162, 30, 64, 96, 128]

A sequence of images is acquired from file, converted to the HSV color space, and reduced to contain only saturated
colors just like in the previous example. As already mentioned, color selection in this color space is pretty stable
under changing illumination. That is why the hard-coded color ranges are sufficient for a reliable classification.
However, it has to be kept in mind that a certain degree of color saturation must be guaranteed for the illustrated
method to work.

C
ol

or
P

ro
ce

ss
in

g

136 Color Processing

Figure 14.6: Simple classification of fuses by color with varying illumination.

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, Saturated, 60, 255)

reduce_domain (Hue, Saturated, HueSaturated)

The classification iterates over the fuse types and checks for sufficiently large areas in the given hue range. This is
done using blob analysis. Afterwards, an additional inner loop labels the detected fuses.

for Fuse := 0 to |FuseTypes| - 1 by 1

threshold (HueSaturated, CurrentFuse, HueRanges[Fuse * 2], \

HueRanges[Fuse * 2 + 1])

connection (CurrentFuse, CurrentFuseConn)

fill_up (CurrentFuseConn, CurrentFuseFill)

select_shape (CurrentFuseFill, CurrentFuseSel, 'area', 'and', 6000, \

20000)

area_center (CurrentFuseSel, FuseArea, Row1, Column1)

dev_set_color ('magenta')
for i := 0 to |FuseArea| - 1 by 1

set_tposition (WH, Row1[i], Column1[i])

write_string (WH, \

FuseColors[Fuse] + ' ' + FuseTypes[Fuse] + ' Ampere')
endfor

set_tposition (WH, 24 * (Fuse + 1), 12)

dev_set_color ('slate blue')
write_string (WH, FuseColors[Fuse] + ' Fuses: ' + |FuseArea|)

endfor

stop ()

14.3.3 Completeness Check of Colored Game Pieces

Example: %HALCONEXAMPLES%/solution_guide/basics/color_pieces.hdev

Completeness checks are very common in machine vision. Usually, packages assembled on a production line have
to be inspected for missing items. Before this inspection can be done, the items have to be trained. In the example
presented here, a package of game pieces has to be inspected. The game pieces come in three different colors,
and the package should contain four of each type. The pieces themselves can be of slightly different shape, so
shape-based matching is not an option. The solution to this problem is to classify the game pieces by color. The
method applied here is a classification using neural nets (MLP classification).

In the training phase an image is acquired, which contains the different types of game pieces. The task is to specify
sample regions for the game pieces and the background using the mouse (see Figure 14.7a). This is accomplished
by looping over the draw_rectangle1 and gen_rectangle1 operators to draw and create the corresponding
regions. The tuple Classes, which will be used for the actual training, is extended each time.

14.3 Programming Examples 137

(a) (b)

Figure 14.7: Example MLP classification: (a) Training, (b) Result.

read_image (Image, ImageRootName + '0')
for I := 1 to 4 by 1

dev_display (Image)

dev_display (Classes)

disp_message (WindowHandle, \

['Drag rectangle inside ' + Regions[I - 1] + ' color', \

'Click right mouse button to confirm'], 'window', \

24, 12, 'black', 'false')
draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2)

gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2)

concat_obj (Classes, Rectangle, Classes)

endfor

Once the classes are specified, a multilayer perceptron is created using create_class_mlp. With the operator
add_samples_image_class_mlp the training samples from the image are added to the training data of the mul-
tilayer perceptron. The actual training is started with train_class_mlp. The duration of the training depends on
the complexity and sizes of the training regions.

create_class_mlp (3, 7, 4, 'softmax', 'normalization', 3, 42, MLPHandle)

add_samples_image_class_mlp (Image, Classes, MLPHandle)

disp_message (WindowHandle, 'Training...', 'window', 100, 12, 'black', \

'false')
train_class_mlp (MLPHandle, 400, 0.5, 0.01, Error, ErrorLog)

After the training has finished, subsequent images are acquired and classified using clas-

sify_image_class_mlp. The operator returns a classified region.

for J := 0 to 3 by 1

read_image (Image, ImageRootName + J)

classify_image_class_mlp (Image, ClassRegions, MLPHandle, 0.5)

The returned result is processed further using blob analysis. Each class of the classified region (with the exception
of the background class) is accessed using copy_obj. The regions of each class are split up using connection

and reduced to regions of a relevant size (select_shape). The remaining few lines of code calculate the number
of game pieces found for each class and make a decision whether the result was OK or not.

C
ol

or
P

ro
ce

ss
in

g

138 Color Processing

for Figure := 1 to 3 by 1

copy_obj (ClassRegions, ObjectsSelected, Figure, 1)

connection (ObjectsSelected, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', \

400, 99999)

count_obj (SelectedRegions, Number)

dev_set_color (Highlight[Figure - 1])

dev_display (SelectedRegions)

OutString := Regions[Figure - 1] + ': ' + Number + ' '
dev_set_color ('green')
disp_message (WindowHandle, OutString, 'window', \

24 + 30 * Figure, 12, 'black', 'false')
if (Number != 4)

disp_message (WindowHandle, 'Not OK', 'window', \

24 + 30 * Figure, 120, 'red', 'false')
else

disp_message (WindowHandle, 'OK', 'window', \

24 + 30 * Figure, 120, 'green', 'false')
endif

endfor

endfor

To illustrate the advantage of using color information, and to compare the classification results, the example pro-
gram runs an additional training and classification on a converted gray image. As can be seen in figure 14.8 only
the yellow region is detected faithfully.

Figure 14.8: Poor classification result when only using the gray scale image.

rgb1_to_gray (Image, GrayImage)

compose3 (GrayImage, GrayImage, GrayImage, Image)

For more complex (and time-consuming) classifications, it is recommended to save the training data to the file
system using write_class_mlp. Later, the saved data can be restored using read_class_mlp. As an alter-
native to the MLP classification you can also apply a classification based on support vector machines (SVM).
The corresponding operators are create_class_svm, add_samples_image_class_svm, train_class_svm,
classify_image_class_svm, write_class_svm, and read_class_svm. In order to speed up the classifica-
tion itself, you can apply a segmentation based on look-up tables (for LUT-accelerated classification, please refer
to the Solution Guide II-D in section 6.1.7 on page 70) or use a different classification method like Euclidean
classification (see %HALCONEXAMPLES%/solution_guide/basics/color_pieces_euclid.hdev).

14.3.4 Inspect Power Supply Cables

Example: %HALCONEXAMPLES%/hdevelop/Filters/Lines/lines_color.hdev

The task of this example is to locate and inspect the power supply cables depicted in figure 14.9.

14.3 Programming Examples 139

a) b)

Figure 14.9: (a) Original color image with cable centers extracted using the color line extractor; (b) corresponding
results when using the gray value image.

The input for the program are sample images of colored power supply cables. The task is to extract the centers of
each cable together with the width. This is performed using the subpixel-precise color line extractor. To remove
irrelevant structures, contours that are too short are removed.

lines_color (Image, Lines, 3.5, 0, 12, 'true', 'false')
select_contours_xld (Lines, LongLines, 'contour_length', 450, 100000, 0, \

0)

The cable width is determined by accessing the line width attribute. For display purposes, a contour is generated
for each side.

count_obj (LongLines, Number)

gen_empty_obj (EdgesL)

gen_empty_obj (EdgesR)

for K := 1 to Number by 1

select_obj (LongLines, Line, K)

get_contour_xld (Line, Row, Col)

get_contour_attrib_xld (Line, 'angle', Angle)

get_contour_attrib_xld (Line, 'width_right', WidthR)

get_contour_attrib_xld (Line, 'width_left', WidthL)

EdgeRR := Row + cos(Angle) * WidthR

EdgeRC := Col + sin(Angle) * WidthR

EdgeLR := Row - cos(Angle) * WidthL

EdgeLC := Col - sin(Angle) * WidthL

gen_contour_polygon_xld (EdgeR, EdgeRR, EdgeRC)

gen_contour_polygon_xld (EdgeL, EdgeLR, EdgeLC)

concat_obj (EdgesL, EdgeL, EdgesL)

concat_obj (EdgesR, EdgeR, EdgesR)

endfor

To compare this result with the classical line extraction approach (see Edge Extraction (Subpixel-Precise) on page
63), a line extractor is also applied to the gray value image. The result is depicted in figure 14.9b. Here, it becomes
obvious how hard it is to extract the cable using the luminance only.

rgb1_to_gray (Image, GrayImage)

lines_gauss (GrayImage, LinesGray, 3.5, 0.0, 0.7, 'dark', 'true', \

'bar-shaped', 'false')

14.3.5 Locating Board Components by Color

Example: %HALCONEXAMPLES%/hdevelop/Applications/Completeness-Check/ic.hdev

The task of this example is to locate all components on the printed circuit board depicted in figure 14.10.

C
ol

or
P

ro
ce

ss
in

g

140 Color Processing

a) b)

Figure 14.10: (a) Original image; (b) extracted ICs, resistors, and capacitors.

The input data is a color image, which allows locating components like capacitors and resistors very easily by
their significant color: Using a color space transformation, the hue values allow the selection of the corresponding
components. The following code extracts the resistors; the extraction of the capacitors is performed along the same
lines.

decompose3 (Image, Red, Green, Blue)

trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
threshold (Saturation, Colored, 100, 255)

reduce_domain (Hue, Colored, HueColored)

threshold (HueColored, Red, 10, 19)

connection (Red, RedConnect)

select_shape (RedConnect, RedLarge, 'area', 'and', 150.000000, 99999.000000)

shape_trans (RedLarge, Resistors, 'rectangle2')

The extraction of the ICs is more difficult because of the bright imprints, which do not allow a simple thresholding
in one step. Instead of this, dark areas are selected first, which are then combined using a dilation.

threshold (Intensity, Dark, 0, 50)

dilation_rectangle1 (Dark, DarkDilation, 14, 14)

connection (DarkDilation, ICLarge)

After this, the segmentation is repeated inside the thus extracted connected components.

add_channels (ICLarge, Intensity, ICLargeGray)

threshold (ICLargeGray, ICDark, 0, 50)

shape_trans (ICDark, IC, 'rectangle2')

To locate the contact points, small ROIs are generated on the left and right side of each IC.

dilation_rectangle1 (IC, ICDilation, 5, 1)

difference (ICDilation, IC, SearchSpace)

dilation_rectangle1 (SearchSpace, SearchSpaceDilation, 14, 1)

union1 (SearchSpaceDilation, SearchSpaceUnion)

Inside these areas, locally bright spots are detected.

reduce_domain (Intensity, SearchSpaceUnion, SearchGray)

mean_image (SearchGray, SearchMean, 15, 15)

dyn_threshold (SearchGray, SearchMean, PinsRaw, 5.000000, 'light')
connection (PinsRaw, PinsConnect)

fill_up (PinsConnect, PinsFilled)

select_shape (PinsFilled, Pins, 'area', 'and', 10, 100)

14.4 Tips & Tricks 141

14.4 Tips & Tricks

14.4.1 Speed Up

Many online applications require maximum speed. Because of its flexibility, HALCON offers many ways to
achieve this goal. Here, the most common methods are listed.

• Of the color processing approaches discussed in this section, the simplest is also the fastest (decompose
color image and apply blob analysis). If you want to do color classification, you should consider using
class_ndim_norm or class_2dim_sup for maximum performance.

• Regions of interest are the standard method to increase the speed by processing only those areas where
objects need to be inspected. This can be done using pre-defined regions but also by an online generation of
the regions of interest that depend on other objects found in the image.

• By default, HALCON performs some data consistency checks. These can be switched off using set_check.

• By default, HALCON initializes new images. Using set_system with the parameter "init_new_image",
this behavior can be changed.

14.5 Advanced Topics

14.5.1 Color Edge Extraction

Similar to the operator edges_image for gray value images (see Edge Extraction Using Edge Filters on page 55),
the operator edges_color can be applied to find pixel-precise edges in color images. For a subpixel-precise edge
extraction in color images, the operator edges_color_sub_pix is provided. It corresponds to the gray value
based operator edges_sub_pix (see Edge Extraction (Subpixel-Precise) on page 63). Processing the detected
color edges is the same as for gray value images (see Contour Processing on page 79).

14.5.2 Color Line Extraction

Similar to color edge extraction, HALCON supports the detection of lines in color images using lines_color.
For processing the detected lines, please refer to Edge Extraction (Subpixel-Precise) on page 63 and Contour
Processing on page 79.

C
ol

or
P

ro
ce

ss
in

g

142 Color Processing

Texture Analysis 143

Chapter 15

Texture Analysis

The concept of texture analysis is based on the use of an object’s structural features. In order to thoroughly
understand the suitable application of texture analysis, it is important to first comprehend texture itself. Texture
designates the structural characteristics of a surface which present themselves as gray value variations in an image.
The regularity of a texture varies from absolutely regular to irregular. The basis of a regular texture is an ideal grid
structure whereas irregular textures or statistical structures are based upon a random function.

a) b)

Figure 15.1: a) Regular texture; b) irregular texture.

Textures are composed of so-called texels, a short form for texture elements, which can easily be recognized in a
regular texture. Irregular textures also have recurring elements, which are, however, more difficult to recognize.
When working with irregular textures the measures of a texel have to be approximated if necessary. A texel is the
smallest recurring structure as depicted in figure 15.2.

a) b)

Figure 15.2: Texture elements of extremely regular texture: a) original image; b) texel.

Texture analysis is a very useful method for all tasks which cannot simply be solved as their gray value structure
is too complex. It can help you to solve two tasks:

Te
xt

ur
e

A
na

ly
si

s

144 Texture Analysis

• Where is a certain texture located?

• What kind of texture is it?

The first task is typically solved by filtering the image with filters that enhance or suppress certain textures. The fil-
tered image is then segmented into regions with similar texture, either with standard blob analysis or by classifying
each pixel. The second task is typically solved by computing texture features for the whole image or for individual
regions. Based on these features, the image or region is then classified. As a preprocessing, texture filters can be
applied to enhance or suppress certain textures.

Alternatively to this ’traditional’ approach, you can use a texture inspection model to analyze the texture. The
texture inspection model involves a training process which extracts texture features automatically. For more infor-
mation, please refer to the chapter “Inspection . Texture Inspection” of the Reference Manual.

15.1 Basic Concept

A simple texture analysis consists of the following steps:

Use Results

Compute Features

Apply Texture Filter

Acquire Image(s)

15.1.1 Acquire Image(s)

First, an image is acquired.

For detailed information see the description of this method on page 21.

15.1.2 Apply Texture Filter

With a texture filter, specific textural structures can be emphasized or suppressed. HALCON’s standard texture
filter is texture_laws.

15.1.3 Compute Features

The standard HALCON operator for computing texture features is gen_cooc_matrix, which generates the cooc-
currence matrix of an image. Other feature related operators are entropy_gray for calculating the entropy or the
anisotropy of an image or region. These calculations are computed on the original image. To determine the amount
of a feature, the intensity, with a threshold, the task is performed on the image after filtering.

15.1.4 A First Example

Example: %HALCONEXAMPLES%/hdevelop/Applications/Measuring-2D/vessel.hdev

The example for this basic concept clarifies how texture analysis allows the segmentation of textured images which
are impossible to segment using classical segmentation methods like thresholding.

15.2 Extended Concept 145

a) b)

Figure 15.3: a) Original image; b) segmented vessel.

The example illustrated in figure 15.3 shows how to segment a blood vessel in a gray value image using texture
analysis.

In the gray value image a), a blood vessel has to be segmented and measured. In order to perform this task,
texture_laws enhances the structure of the texture by extracting structural elements of a certain direction as
well as their frequency. Then mean_image with the filter size of one texture element, smoothes the image. bi-

nary_threshold is then able to segment the vessel. Now that the vessel is segmented from its environment in
image b), it can easily be measured.

read_image (Image, 'vessel')
texture_laws (Image, Texture, 'el', 2, 5)

mean_image (Texture, Energy, 211, 61)

binary_threshold (Energy, Vessel, 'smooth_histo', 'dark', UsedThreshold)

15.2 Extended Concept

It will, however, sometimes be necessary to perform more advanced steps during texture analysis in order to achieve
a state where the image can be, depending on the kind of analysis undertaken, segmented or classified.

15.2.1 Rectify Image(s)

If the camera looks at an angle onto the object to inspect, it may be necessary to rectify the image to remove lens
distortion and perspective distortion.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on page 80.

15.2.2 Scale Down Image(s)

When both the texel and its smallest substructure are relatively large, you can downscale the image with the
operator zoom_image_factor to speed up the texture analysis.

You can also create a pyramid of downscaled images by calling zoom_image_factor multiple times and then
apply the texture filtering or feature computation to the image pyramid. Thus, texture analysis is performed at
multiple scales as is shown in example classify_wood.hdev on page 150.

15.2.3 Use Region of Interest

A region of interest can be created to reduce the image domain for which the texture analysis will be performed.
This will reduce the processing time. In particular when computing texture features, the region of interest can be
the result of a previous segmentation.

For detailed information see the description of this method on page 25.

Te
xt

ur
e

A
na

ly
si

s

146 Texture Analysis

Use Results

Visualize Results

Compute Features

Apply Texture Filter

Align ROIs or Images

Use Region of Interest

Scale Down Image(s)

Rectify Image(s)

Acquire Image(s)

15.2.4 Align ROIs or Images

If you are dealing with a regular texture, you can exploit this fact by rotating the image such that the texture
appears aligned to the image axes. Then, both texture filtering and texture features can be applied or computed
more specifically.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

15.2.5 Apply Texture Filter

The operator texture_laws actually provides a family of texture filters. More information can be found in
section 15.7 on page 158. After calling texture_laws, you should smooth the image by using mean_image with
the mask size set to the size of the texel.

For certain images with simple textures, the operator dyn_threshold can be a good alternative to a regular filter
as it is faster. Before using this operator, you must call mean_image with the mask size set to twice the texel size.

15.2.6 Compute Features

If you want to use the cooccurrence matrix corresponding to different directions, it is more efficient to generate the
matrix with gen_cooc_matrix and then compute the features with cooc_feature_matrix.

Besides the texture features based on the cooccurrence matrix, you can also use the entropy and anisotropy of an
image, which are computed by the operator entropy_gray, respectively. After the filtering has been performed,
the intensity of a feature in the image can be computed using a threshold.

All operators can compute the texture features either for the complete image or for image regions. More informa-
tion about texture features can be found in section 15.6 on page 153.

15.3 Programming Examples 147

As an advanced texture feature, you can also compute the distribution of the image gradient, which shows how
the gray values change by first filtering the image with sobel_amp and then computing the histogram with
gray_histo_abs.

15.2.7 Visualize Results

To check the results of texture analysis, you might want to display the images, the regions, and the features.
To visualize the cooccurrence matrix, you must compute the matrix and its features in separate steps using
gen_cooc_matrix and cooc_feature_matrix.

Often, details in the texture images and the cooccurrence matrix do not show up clearly in the original gray value
image. In such a case, you can try to change the look-up table (LUT).

For detailed information see the description of this method on page 223.

15.2.8 Use Results

The filtered image is typically used as input for segmentation tasks, either by Blob Analysis on page
33 or by (pixel) Classification on page 119. Described examples are vessel.hdev on page 144, nov-

elty_detection_svm.hdev, and novelty_detection_dyn_threshold.hdev. The computed texture fea-
tures are typically used as input for general Classification on page 119. A described example is clas-

sify_wood.hdev on page 150.

15.3 Programming Examples

15.3.1 Detect Defects in a Texture with Novelty Detection

Example: %HALCONEXAMPLES%/hdevelop/Segmentation/Classification/novelty_detection_svm.hdev

A detailed description of this example can be found in the chapter Classification on page 119.

The task of this example is to detect defects in a texture that do not correspond to the texture of trained
good objects. For this, it uses the novelty detection mode of the SVM classifier. In the example nov-

elty_detection_dyn_threshold.hdev, which is described in the next section, the same task is solved with
the operator dyn_threshold.

The raw errors returned by the SVM are postprocessed to remove insignificant parts of the detected errors. The
texture image is generated in a procedure: It is a five-channel image that contains the result of applying five different
Laws filters, which basically correspond to first and second derivatives, and smoothing them sufficiently. Laws
filters, included in the HALCON operator texture_laws, are very useful whenever it is necessary to enhance
certain structures in a texture as becomes clear in figure 15.4.

texture_laws (Image, ImageEL, 'el', 5, 5)

texture_laws (Image, ImageLE, 'le', 5, 5)

texture_laws (Image, ImageES, 'es', 1, 5)

texture_laws (Image, ImageSE, 'se', 1, 5)

texture_laws (Image, ImageEE, 'ee', 2, 5)

compose5 (ImageEL, ImageLE, ImageES, ImageSE, ImageEE, ImageLaws)

smooth_image (ImageLaws, ImageTexture, 'gauss', 5)

The figure 15.4 shows a plastic mesh without defects on the left side and one that is damaged on the right side.
Starting with the original image, first the Laws filter is applied which enhances horizontal structures, followed by
the Laws filter le, stressing vertical structures. The damages in the filtered images d) to f) are quite clearly visible.
For more information about the Laws filter read in section 15.7 on page 158 later in this chapter.

Te
xt

ur
e

A
na

ly
si

s

148 Texture Analysis

a) Original image: mesh

b) Laws filter el

c) Laws filter le

d) original image: damaged mesh

e) Laws filter el

f) Laws filter le

Figure 15.4: Images a) to c) mesh without defects; images d) to f) damaged mesh.

15.3.2 Detect Defects in a Web Using Dynamic Thresholding

Example: %HALCONEXAMPLES%/solution_guide/basics/novelty_detection_dyn_threshold.hdev

The task of this example is also to detect defects in a texture that do not correspond to the texture of trained good
objects similar to the example novelty_detection_svm.hdev on page 124.

The task of this example is to detect defects in a mesh using the operator dyn_threshold. In this way, the operator
can be used to find textures that differ from the rest of the image. dyn_threshold is an operator that is easy to
handle. Together with a smoothing filter like mean_image, it can extract objects that differ locally from their
neighborhood. Note that the operator dyn_threshold can only be used successfully for texture analysis if the
defects can be detected as darker or brighter then the rest of the texture.

15.3 Programming Examples 149

First, the image is smoothed using the HALCON operator mean_image. The mash size determines the size of the
extracted objects: The larger the mask size is chosen, the larger the found regions become. As a rule of thumb,
the mask size should be about twice the diameter of the objects to be extracted. Subsequently, dyn_threshold
is performed and connected regions are looked for. The parameter ’area’ of the operator select_shape makes it
possible to find regions that differ in size, e.g., that are too small. Found errors are finally counted and displayed.

read_image (Image, 'plastic_mesh/plastic_mesh_' + J$'02')
mean_image (Image, ImageMean, 49, 49)

dyn_threshold (Image, ImageMean, RegionDynThresh, 5, 'dark')
connection (RegionDynThresh, ConnectedRegions)

select_shape (ConnectedRegions, ErrorRegions, 'area', 'and', 500, 99999)

count_obj (ErrorRegions, NumErrors)

If the number of the errors exceeds zero, the message ’Mesh not OK’ is displayed. Otherwise the web is undamaged
and ’Mesh OK’ appears as is shown in figure 15.5.

b) smoothed image

c) connected regions d) classification result

a) mesh without defect

Figure 15.5: a) Faultless mesh b) smoothed image c) connected regions d) classification: Mesh OK.

Te
xt

ur
e

A
na

ly
si

s

150 Texture Analysis

b) smoothed image

c) connected regions d) classification result

a) mesh with defects

Figure 15.6: a) Defective mesh b) smoothed image c) connected regions d) classification: Mesh not OK.

15.3.3 Classification of Different Types of Wood

Example: %HALCONEXAMPLES%/solution_guide/basics/classify_wood.hdev

The objective of this example is to classify different types of wood according to their surface texture.

First the different classes of wood, as shown in figure 15.7, are specified.

Classes := ['apple', 'beech', 'cherry', 'maple', 'oak', 'walnut']

Then, the training is performed, which means that several images are read and trained for each type of wood.
Therefore, the SVM learns different wood textures and compares each new wood image to the existing images. It
checks which class is most similar and displays the assigned class.

For each image, features are computed in a procedure and then passed to the operator clas-

sify_image_class_mlp.

gen_features (Image, FeatureVector)

classify_class_mlp (MLPHandle, FeatureVector, 2, FoundClassIDs, Confidence)

The procedure gen_features calls the actual feature extraction procedure and then downsamples the image and calls
the second procedure with the smaller image again.

procedure gen_features (Image, FeatureVector)

gen_sobel_features (Image, FeatureVector, FeatureVector)

zoom_image_factor (Image, Zoomed1, 0.5, 0.5, 'constant')
gen_sobel_features (Zoomed1, FeatureVector, FeatureVector)

The procedure gen_sobel_features calculates multiple texture features. First the cooccurrence matrix is computed
for the directions 0 and 90 degrees.

procedure gen_sobel_features (Image, Features, FeaturesExtended)

* Coocurrence matrix for 90 deg:

cooc_feature_image (Image, Image, 6, 90, Energy, Correlation, Homogeneity, \

Contrast)

15.3 Programming Examples 151

a) b)

c) d)

e) f)

Figure 15.7: Result of wood classification: a) apple, b) beech, c) cherry, d) maple, e) oak, f) walnut .

Furthermore, within the procedure the gray value edges are extracted with the operator sobel_amp. The bigger
the gray value difference between neighboring pixels is, the brighter these areas are shown in the resulting image.
This way, the filtering enables to find and highlight structures in an image. As a feature derived from the sobel
image, the absolute gray value histogram of the edge amplitude image is computed.

sobel_amp (Image, EdgeAmplitude, 'sum_abs', 3)

gray_histo_abs (EdgeAmplitude, EdgeAmplitude, 8, AbsoluteHistoEdgeAmplitude)

All calculated features are appended to the input feature vector and returned in the output feature vector.

FeaturesExtended := [Features,Energy,Correlation,Homogeneity,Contrast]

FeaturesExtended := [FeaturesExtended,AbsoluteHistoEdgeAmplitude]

As already noted, the texture features are computed on multiple pyramid levels by zooming the images with a
factor of 0.5 for each level. This makes it possible to analyze a bigger neighborhood. In the example, only 2
pyramid levels are used; to use more for a more complex task, you can activate the corresponding lines. Note,
however, that you must then train the classifier anew.

zoom_image_factor (Image, Zoomed1, 0.5, 0.5, 'constant')
gen_sobel_features (Zoomed1, FeatureVector, FeatureVector)

* zoom_image_factor (Zoomed1, Zoomed2, 0.5, 0.5, 'constant')
* gen_sobel_features (Zoomed2, FeatureVector, FeatureVector)

FeatureVector := real(FeatureVector)

Te
xt

ur
e

A
na

ly
si

s

152 Texture Analysis

Similarly, the procedure gen_sobel_features contains deactivated code to compute more features: the entropy,
anisotropy, and the absolute gray value histogram of the image.

* entropy_gray (Image, Image, Entropy, Anisotropy)

* gray_histo_abs (Image, Image, 8, AbsoluteHistoImage)

* FeaturesExtended := [FeaturesExtended,Entropy,Anisotropy]

* FeaturesExtended := [FeaturesExtended,AbsoluteHistoImage]

Note again that if you use more features you must train the classifier anew.

15.4 Relation to Other Methods

15.4.1 Methods that are Using Texture Analysis

Blob Analysis (see description on page 33)
Blob analysis identifies pixels of relevant objects (also called foreground) by their gray value in an image. When-
ever objects cannot simply be segmented by separating dark pixels from bright pixels, those objects can possibly
be identified by their texture. Therefore, it is useful to perform a texture analysis first and then use the results to
segment the objects.

Classification (see description on page 119)
Classification is the technical term for the assignment of objects to individual instances of a set of classes and can
be a useful method to follow the texture analysis if the object is characterized by a particular texture. To define the
classes, this texture has to be specified, e.g., by a training that is based on known objects. After the training, the
classifier compares the features of the object with the features associated to the available classes and returns the
class with the largest correspondence.

15.5 Advanced Topics

15.5.1 Fast Fourier Transform (FFT)

Fast Fourier transform, short FFT, is another option for texture analysis. This method makes use of the different
frequencies in textures. HALCON’s FFT exactly determines the amount of each frequency in the image. It enables
the construction of any type of linear filters which means that application-oriented filter designs are possible.
There is also a huge set of predefined filters as well as advanced Gabor texture filters. With HALCON’s FFT it is
possible, e.g., to emphasize any structure of a special texture (see figure 15.8). A convolution can be performed by
transforming the image and the filter into the frequency domain, multiplying the two results, and transforming the
result back into the spatial domain. Therefore the two reasons for using FFT are:

• For bigger filter sizes it is more efficient to apply the filters in Fourier domain as FFT always takes the same
time for any mask size, unlike normal filters.

• It is a great advantage that filters can be customized to remove or emphasize specific frequencies from the
image.

Standard operators for FFT are:

• fft_generic: a generic version of the complex Fourier transform,

• rft_generic: real-valued Fourier transform,

• fft_image, a shortcut for the forward transformation with fft_generic

• and fft_image_inv, a shortcut to the backward transformation with fft_generic.

15.5.2 Texture Analysis in Color Images

By combining texture analysis with Color Processing on page 131, even more tasks can be solved efficiently.
Typically, the color image is first split into color channels and possibly transferred into another color space. Then,
texture filtering is applied and/or texture features are computed.

15.6 More Information About Texture Features 153

a) b)

Figure 15.8: a) Original image b) with FFT enhanced defect structure.

15.6 More Information About Texture Features

15.6.1 Entropy and Anisotropy (entropy_gray)

Entropy and anisotropy describe the gray value distribution of an image independent of the position of the pixels.

The entropy for white noise, as shown in image a) of figure 15.9, is high as white noise comprises of an equal
number for all gray values.

Even though binary noise (image b) of figure 15.9 looks similar to white noise at first sight, it is in fact quite
different because it only consists of two gray values: black and white. Therefore, the entropy is very low.

Image c) of figure 15.9 shows a gray ramp and image a) of figure 15.9 shows white noise. Both have the same
value for entropy even though they look very different. Both images include, however, the same frequency for each
gray value. This shows that the position of pixels within an image has no influence on the image’s entropy.

a) entropy = 8 b) entropy = 1 c) entropy = 8

Figure 15.9: a) White noise; b) binary noise; c) gray ramp.

Even though real images do not usually show such extreme values, the examples in figure 15.10 still highlight the
connection between gray value distribution (as is presented in the histogram) and the entropy value.

Anisotropy determines the symmetry of the gray value distribution. A value of -0,5 means that the histogram curve
is symmetric. The value is higher if the image has more bright parts and lower if it has more dark parts as becomes
clear from images a) and b) of figure 15.11.

Te
xt

ur
e

A
na

ly
si

s

154 Texture Analysis

a) entropy = 5.12 b) entropy = 6.4

Figure 15.10: Entropy values of a) honeycomb structure and b) dust filter.

a) anisotropy = −0.55 b) anisotropy = −0.5 c) anisotropy = −0.4

Figure 15.11: Anisotropy in images with different gray value distributions.

15.6.2 Cooccurrence Matrix (gen_cooc_matrix)

The cooccurrence matrix describes the relationship between the gray value of a pixel and the gray values of its
neighbors. The matrix elements contain the probability that two gray values appear next to each other. Slow
gray value changes are indicated by high values along the diagonal of the principal axis. Strong contrasts lead to
entries far away from the diagonal of the principal axis. The connection between gray values in the image, in the
histogram, and finally in the cooccurrence matrix is shown in images a), b), and c) of figure 15.12. Computing
the cooccurrence matrix, you can select which neighbors are evaluated. Based on the cooccurrence matrix, four
features can be computed:

• energy,

• correlation,

15.6 More Information About Texture Features 155

• homogeneity, and

• contrast.

b) c)a)

Figure 15.12: a) Original image; b) gray value histogram; c) cooccurrence matrix.

15.6.3 Features of the Cooccurrence Matrix

Energy

Energy is actually the short form for uniformity of energy and indicates if all kinds of gray value combinations are
present or if certain gray value combinations are dominant. An image with a constant gray value has the highest
energy.

a) energy = 0.45 b) energy = 0.0002

Figure 15.13: Energy values.

Image a) in figure 15.13 has a high energy because there are only few gray value combinations, which change
always according to the same scheme. Image b) has little energy because the changes between pixels differ, i.e.,
there is no uniformity.

a) energy = 0.088 b) energy = 0.005

Figure 15.14: Energy values of a) canvas and b) dust filter.

The textures in figure 15.14 show how parts that contain pixels of the same gray value contribute to the higher
energy of image a), whereas gray values in image b) are almost constantly changing and therefore lead to a low
energy.

Te
xt

ur
e

A
na

ly
si

s

156 Texture Analysis

Correlation

Correlation defines the measure of dependency between neighboring values. If the matrix shows a thin line from
top left to right bottom, this means that the image is blurry, which is why the values are so close together. A wide,
roundish progress indicates a focused image. Contrasts and little or no correlation are indicated by pixels far away
from the main diagonal. The question of correlation between pixels can however sometimes depend on the image’s
orientation as is depicted in figure 15.15.

a) original image b) correlation 0° = −1.0 c) correlation 90° = 1.0

Figure 15.15: Correlation values for different image orientations. Note that images b) and c) are depicted in pseu-
docolors to enhance the perceptibility of the cooccurrence matrix.

The two correlation values of the same image are very different depending on the rotation of the image. 0° causes a
low correlation whereas 90° has a high one. In figure 15.16 the correlation values show that image a) with extreme
gray value changes has a lower value than image b) with a texture that consists of gray values which are quite
similar to each other.

a) correlation = 0.0959 b) correlation = 0.795

Figure 15.16: Correlation values of a) mesh and b) dust filter.

Homogeneity

Homogeneity is high if large areas in an image have the same gray values.

a) homogeneity = 0.47 b) homogeneity = 0.5

Figure 15.17: Homogeneity values.

15.6 More Information About Texture Features 157

Image a) of figure 15.17 does not include any groups of pixels with the same gray values which makes it very
inhomogeneous. Image b) with white noise includes areas, a feature which makes it more homogeneous. A
unicolored image has the highest homogeneity value.

a) homogeneity = 0.65 b) homogeneity = 0.66

Figure 15.18: Homogeneity values of a) mesh and b) grid.

Realistic images, as shown in figure 15.18, clarify these homogeneity rules. Even though both images look partially
homogeneous (they both contain bright and dark parts of a certain size but also include some changes from dark to
bright) there are little differences. The mesh image is less homogeneous because the structure is three dimensional
and therefore little deviations in brightness can cause slightly different gray values on the white mesh. Image b),
however, contains bigger parts with a same gray value (the white background) and is also only two dimensional.

Contrast

The contrast value between two pixels is multiplied and squared. High differences lead to steep edges and a high
value.

a) contrast = 3969 b) contrast = 203,9

Figure 15.19: Contrast values.

The example images in figure 15.19 depict lines that run in different distances from each other. The image with
the denser lines also has a higher contrast. This shows that the contrast value includes the frequency as well as the
intensity.

a) contrast = 86.2 b) contrast = 10.8

Figure 15.20: Contrast values of a) grid and b) dust filter.

Te
xt

ur
e

A
na

ly
si

s

158 Texture Analysis

In figure 15.20, the grid structure in image a) has a higher contrast than the dust filter in image b) because the gray
value changes in image a) are more extreme than the gray value changes in image b).

15.7 More Information About Texture Filtering

15.7.1 The Laws Filter (texture_laws)

By applying a Laws filter you can enhance or suppress textural structures in an image based on their spatial
frequency, i.e., the size of the texels.

The operator texture_laws applies texture transformations (according to K. I. Laws) to an image. This is done
by convolving the input image with a special filter mask of either 3x3, 5x5, or 7x7 pixels. For most of the filters
the resulting gray values must be modified by a shift. This makes the different textures in the output image more
comparable to each other, provided suitable filters are used.

The name of the filter is composed of the letters of the two vectors used, where the first letter specifies a convolution
in the column direction, while the second letter specifies a convolution in the row direction. The letters themselves
specify the convolution. You can select "l", "e", "s", "r", "w", "o" with "l" emphasizing low and "o" emphasizing
high frequencies.

Therefore, the second letters detecting low frequencies to high frequencies are "l", "e", "s", "r", "w" and "o". The
example figures figure 15.21 and figure 15.22 show how the two common texture filters "le" and "ls" work on two
different textures.

a) b) c)

Figure 15.21: a) Mesh (original image) b) Laws filter le and b) Laws filter ls.

The Laws filter "le" looks for low frequencies in the image. As can be seen in figure 15.21, there are a few low
frequencies in the image. The Laws filter "ls", however, looks for high frequencies, which occur very rarely in the
image in places where gray values change from black to white and vice versa. As a result, the filtered image looks
quite dark.

b)a) c)

Figure 15.22: a) Dust filter (original image) b) Laws filter le and b) Laws filter ls.

The filtered images in figure 15.22 show that the original image contains low frequencies as well as high frequen-
cies as it responds to both the "le" and "ls" filter. The Laws filter is therefore useful to distinguish textures which
differ in their frequencies in a certain direction.

Bar Code 159

Chapter 16

Bar Code

The idea of bar code reading is quite easy. You initialize a bar code model and then execute the operator for reading
bar codes. Within this operator, you specify the desired bar code type. That way, you can read different bar code
types by successively applying the operator with different parameters for the type, but without the need to create
a separate model for each bar code type. The result of the reading is a region that contains the bar code and the
decoded string.

The advantage of the HALCON bar code reader is its ease of use. No advanced experience in programming or
image processing is required. Only a few operators in a clear and simple order are applied. Furthermore, the bar
code reader is very powerful and flexible. An example for this is its ability to read an arbitrary number of bar codes
of the same code type in any orientation even if parts are missing.

16.1 Basic Concept

Bar code reading consists mainly of these steps:

Read Bar Code(s)

Create Bar Code Model

Acquire Image(s)

16.1.1 Acquire Image(s)

For the online part, i.e., during reading only, images must be acquired.

For detailed information see the description of this method on page 21.

16.1.2 Create Bar Code Model

You create a bar code model with the operator create_bar_code_model. The returned handle provides all
necessary information about the structure of the bar code. In most cases, you do not have to adjust any parameters.

16.1.3 Read Bar Code(s)

Bar codes are read using the operator find_bar_code. Within this operator, you specify the model and the bar
code type that you search for. The operator returns the regions and the decoded strings of all bar codes of the
specified type that are found in the image or in the specified region of interest.

B
ar

C
od

e

160 Bar Code

16.1.4 A First Example

As an example for this basic concept, here is a very simple program, that reads the EAN 13 bar code depicted in
figure 16.1.

Figure 16.1: Reading a bar code.

A test image is acquired from file and the bar code model is created with create_bar_code_model. Then, the
operator find_bar_code (with CodeType set to ’EAN-13’) returns the region and the decoded string for the
found bar code.

read_image (image, 'barcode/ean13/ean1301')
create_bar_code_model ([], [], BarCodeHandle)

find_bar_code (image, SymbolRegions, BarCodeHandle, 'EAN-13', \

DecodedDataStrings)

16.2 Extended Concept

In some cases, bar code reading can be more advanced than in the example above. For example, a preprocessing
or rectification of the image as well as the visualization of results can be necessary.

16.2.1 Use Region Of Interest

Bar code reading can be sped up by using a region of interest. The more the region in which the code is searched
can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 25.

16.2.2 Preprocess Image(s)

There are various possibilities of preprocessing bar codes. Some of the most common ones are listed below.

If a bar code image is a bit blurry, emphasize can be used to emphasize high frequency areas of the image and,
therefore, let it appear sharper.

The operator zoom_image_factor enlarges a bar code that is too small to be read.

In case of low resolution (< 2.0 pixels element size), operators like emphasize, zoom_image_factor, or
mean_image should not be used for preprocessing, as crucial information could be lost after the image manip-
ulation. See the section on ’small_elements_robustness’ in the operator reference of set_bar_code_param
for details.

16.2 Extended Concept 161

Visualize Results

Check Print Quality

Read Bar Code(s)

Adjust Bar Code Model

Create Bar Code Model

Rectify Image(s)

Preprocess Image(s)

Use Region Of Interest

Acquire Image(s)

Low contrast images can be enhanced by scaling the gray value range with scale_image (or easier with the
external convenience procedure scale_image_range).

HALCON expects bar codes to be printed dark on a light background. To read light bar codes on a dark background
you must first invert the image using the operator invert_image.

16.2.3 Rectify Image(s)

The bar code reader can handle perspective distortions up to a certain extent. For very strong distortions, it might
be necessary to rectify the image before applying the bar code reader.

How to perform the rectification for a bar code that is printed radially on a CD is shown in the description of the
example program circular_barcode.hdev on page 171. Detailed information about compensating distortions
caused, e.g., by non-perpendicularly mounted cameras, can be found in the Solution Guide III-C in section 3.4 on
page 80.

16.2.4 Create Bar Code Model

Sometimes, a better result can be obtained when adjusting parameters like the range for the element size
(’element_size_min’, ’element_size_max’). All available parameters can be changed either here, or in a
later step using set_bar_code_param.

16.2.5 Adjust Bar Code Model

In most cases no adaptation of parameters is necessary for reading bar codes with HALCON. If the bar code
reading fails, however, you can adjust the following parameters with the operator set_bar_code_param before
applying find_bar_code.

B
ar

C
od

e

162 Bar Code

Adjust Bar Code and Element Size

In particular, you can adjust the bar code size and the range of the bar code element’s width with the parameters

• ’barcode_width_min’,

• ’barcode_width_max’,

• ’barcode_height_min’,

• ’element_size_min’, and

• ’element_size_max’.

The description of the example barcode_typical_cases.hdev on page 168 shows how an adaption of the
element’s size can improve the decoding.

Determine Check Character

For code types having a check character, you can specify whether the check character is used to check the result or
if it is returned as part of the decoded string (’check_char’).

Adapting the Thresholds for the Extraction of Element Edges

Two threshold parameters control the detection of edges within a bounding box. ’meas_thresh’ calculates a
relative threshold by detecting the highest and lowest gray values within a rough bar code region and using this
dynamic range as a basis for edge detection. ’meas_thresh’ works well unless images contain lots of noise. It
also fails if the code is a stacked code, which, due to its structure, contains a white patch within the bounding box.
In both cases the calculated gray-value range of the images is small. This results in an unreasonably small value
for ’meas_thresh’ and can therefore cause the detection of false edges.

This, however, is prevented by ’meas_thresh_abs’, which sets an absolute threshold of 5.0 for all images. This
means that the difference between the brightest and the darkest value of the element border has to be more than 5.0
to be classified as an edge. Therefore, no false edges are detected in images with a small dynamic range.

Sometimes, a low threshold is needed, e.g., if an image contains parts with a high dynamic range as well as parts
with a low one, due to inhomogeneous illumination. Then, ’meas_thresh_abs’ must be turned off, by setting it
to 0.0 before decreasing the value of ’meas_thresh’.

Speedup

There are two cases in which you can improve the performance. The first case concerns images with too many
false candidates, which are scanned with the default value of 10 scanlines each, whereas a valid bar code itself
is usually decoded after one or two scans. Reducing the number of scanlines therefore leads to a significant
speedup. Note that if the bar code cannot be detected after reducing the number of scanlines, the number has to
be increased again. The second case concerns images with stacked bar codes (currently RSS-14 Stacked, RSS-14
Stacked Omnidirectional, and RSS Expanded Stacked). The reader evaluates by default the necessary number of
scanlines, 20 for RSS-14 Stacked and 55 for RSS Expanded Stacked, which may be higher than necessary. If
an RSS Expanded Stacked code does not have the maximum possible number of rows, it is useful to specify the
number of scanlines with the parameter ’num_scanlines’ (the reader uses 5 scanlines per row). Consequently,
the performance is increased. Both cases are demonstrated in the example %HALCONEXAMPLES%\hdevelop\

Identification\Bar-Code\barcode_param_num_scanlines.hdev. Please refer to the Reference Manual
for further information. If the number of bar codes per image is known, decoding time can be decreased by spec-
ifying this number with the parameter ’stop_after_result_num’ of the operators set_bar_code_param or
set_bar_code_param_specific. This way, the detection of false codes after all existing bar codes have already
been read can be prevented and, as a consequence, processing can be sped up.

Increase Bar Code Detection Robustness

The parameter ’min_identical_scanlines’ specifies how many successfully decoded scanlines with identical
result are required to decode a bar code. If this parameter is not set, a bar code is considered as decoded after the
first scanline was successfully decoded. It can be useful to increase the value of this parameter when working either
with an image containing lots of noise or with various bar codes to prevent the detection of false bar codes. The
use of the parameter is demonstrated in the example %HALCONEXAMPLES%/hdevelop/Identification/Bar-

Code/barcode_param_scanning_control.hdev.

In some cases it might be useful to decode a bar code based on the majority of all scanlines in-
stead of the numbers of identical scanlines, e.g., if false decode results shall be reduced. The pa-
rameter ’majority_voting’ specifies the selection mode for the decode result. If this parameter is

16.2 Extended Concept 163

not set, a bar code is decoded successfully if the minimal number of scanlines was decoded as de-
scribed above. If this parameter is set to ’true’, a majority voting scheme is used to select between
different scanline results and the overall result is decoded by the majority of all scanlines. The use
of the parameter is demonstrated in the example %HALCONEXAMPLES%/hdevelop/Identification/Bar-

Code/barcode_param_majority_voting.hdev. Please refer to the Reference Manual for further information.

Enforce Verification of the Quiet Zone

HALCON is able to read bar codes even if their quiet zones are violated. However, the parameter ’quiet_zone’
can be used to handle quiet zone violations more rigidly. The use of this parameter is demonstrated in the example
%HALCONEXAMPLES%/hdevelop/Identification/Bar-Code/barcode_quiet_zone.hdev.

Adapt Tolerance for Start/Stop Matching Criteria

The ’start_stop_tolerance’ specifies the tolerance for detecting the start- and stop pattern. A less tol-
erant criterion increases the robustness against false detections, but might reduce the general detection rate.
This criterion can be activated by setting the parameter to ’low’. A ’high’ tolerance is recommended if the
boundary of the symbol in the image is clearly visible, the image is not noisy, and the symbol does not
contain bar codes of different types. Note that the parameter is currently only implemented for Code 128.
How to adapt the parameter ’start_stop_tolerance’ to avoid misdetection is demonstrated in the example
%HALCONEXAMPLES%/hdevelop/Identification/Bar-Code/barcode_param_scanning_control.hdev.

To query the values that are currently used for the individual parameters, you can apply the operator
get_bar_code_param.

Determine Bar Code Parameters by Training In order to determine the best parameter settings, an automati-
cal training can be performed. The advantage of this training is an increased robustness of the bar code reader.
Furthermore, the decoding time can be reduced as a side effect. Parameter settings can be determined for ’el-
ement_size_min’, ’element_size_max’, ’orientation’, ’meas_thresh’, and ’meas_thresh_abs’. To
activate the training mode, use the operator create_bar_code_model to create a model for the training and set
the generic parameter ’train’ to a tuple of parameter names that should be trained or ’all’ to train all bar code
parameters that are available for the training. To determine all parameters with given properties, e.g., ’trained’,
the operator query_bar_code_params can be used. How to perform the training is demonstrated in the example
%HALCONEXAMPLES%\hdevelop\Identification\Bar-Code\barcode_training.hdev. Please refer to the
Reference Manual for further information.

16.2.6 Read Bar Code(s)

The operator find_bar_code allows you to either find one bar code type or several bar code types in one call.
When reading one code type, choose the type - if it is known - as ’CodeType’.

Autodiscrimination

Autodiscrimination describes the simultaneous decoding of multiple bar code types. It is activated by setting
’CodeType’ to ’auto’ or by choosing the expected bar code types. Note, however, that each allowed bar code
type increases the runtime of the operator and too many bar code types may decrease the reliability of the decoding.
You should at least exclude all definitely not occurring bar code types that are scanned before the first expected
bar code type occurs or, even better, just scan for the expected bar code types (see figure 16.2). For more infor-
mation on autodiscrimination including the decoding order, please refer to the documentation of find_bar_code
in the Reference Manual. Furthermore, the example %HALCONEXAMPLES%\hdevelop\Identification\Bar-

Code\barcode_autodiscrimination.hdev demonstrates the practical use of autodiscrimination. The opera-
tors set_bar_code_param_specific and get_bar_code_param_specific allow to set parameters of the bar
code model specifically for certain bar code types, which may especially be interesting for autodiscrimination.

Restrict the Reading to a Part of the Image

If the code always appears approximately in the same position within every image, you can speed up your appli-
cation using the operator decode_bar_code_rectangle2 instead of the operator find_bar_code. Rather than
performing a time-consuming search for candidate regions, decode_bar_code_rectangle2 scans the provided
region directly for bar codes. The position of the code is given in an arbitrarily oriented rectangle. Note that the
direction is important. It needs to be perpendicular to the elements.

B
ar

C
od

e

164 Bar Code

Figure 16.2: Using the ’autodiscrimination’ feature, different bar codes within one image - in this case two codes of
the type Code 39 and one EAN-13 - can automatically be recognized and read.

Small Elements Robustness

If find_bar_code or decode_bar_code_rectangle2 are not able to decode a sufficient number of scanlines,
the operators apply an additional decoding attempt (as long as ’small_elements_robustness’ was not set to
’false’ and ’element_size_min’ is set smaller than 2.0). This approach can help to read the code in case the
resolution of the elements is rather low.

For more information on this decoding step see the section on ’small_elements_robustness’ in the operator
reference of set_bar_code_param).

Access Results

After reading the bar codes with find_bar_code, you can explicitly query the regions of the decoded bar codes
or their candidates with the operator get_bar_code_object. The decoded strings or the underlying reference
data (including, e.g., the start/stop characters) can be queried with the operator get_bar_code_result.

Diagnostic Status Messages

In order to control why scanlines are not successfully detected or why the code reading fails completely, di-
agnostic status messages in human readable format can be returned (see figure 16.3). With the operator
get_bar_code_result set to ’status’ or ’status_id’ and supplying a candidate handle, diagnostic sta-
tus messages for each possible scanline in the candidate region are returned in a tuple. Use the operator
get_bar_code_object with the parameter ’scanlines_all’ to query the corresponding scanlines or ’scan-
lines_valid’ to query all valid scanlines. If you want to further process the scanline information, the ’_plain’-
variants of the parameters mentioned above, i.e., ’scanlines_all_plain’ and ’scanlines_valid_plain’

can be used. They return the detected or valid scanlines as XLD contours. Note that the status of the scanlines of a
bar code can only be evaluated if the operator find_bar_code or the operator decode_bar_code_rectangle2
was called before while in ’persistence’ mode. The ’persistence’ mode allows the storage of intermediate
results during bar code decoding.

Also note that status information about the scanlines after the additional decoding step regarding small elements ro-
bustness (described above) needs to be retrieved using ’status_small_elements_robustness’, while ’sta-
tus’ and ’status_id’ still return messages concerning the decoding status without the additional approach.

Determining the status increases runtime and should therefore only be performed if the debugging information is
needed. The example %HALCONEXAMPLES%\hdevelop\Identification\Bar-Code\barcode_status.hdev

demonstrates the use of the bar code parameters ’status’ and ’status-id’.

16.2 Extended Concept 165

Figure 16.3: Status messages can be used to solve problems that might occur when reading bar codes.

What if the Code Reading Fails?

If the code reading fails, an error message is returned. Depending on the message we have several suggestions on
how to solve the problem.

If regions are not found properly, you can either improve the image quality itself, which helps to solve many
problems, or - if that is not possible - adjust the software to better detect your code. If you know the location
of your bar code, you can use the operator decode_bar_code_rectangle2 to specify the location instead of
searching the whole image (see above).

Another reason why regions are not detected can be an element size that is not adjusted to the actual size of
the bar code - which is especially a problem, if the code is very big or very small. You can solve the prob-
lem by adjusting the parameters element_size_min or element_size_max. How to adapt these parameters
and handle other typical cases is described in the example %HALCONEXAMPLES%\solution_guide\basics\

barcode_typical_cases.hdev, which is documented in this chapter (see the example descriptions in sec-
tion 16.3 on page 168). This example presents some typical cases of problems that can occur while reading
bar codes and presents some easy solutions.

The error messages (see the table of error messages on page 166) which lead to a failure of code reading begin
either with ’edges’, ’decoding’ or with ’check’. These categories represent the state within the decoding process
in which the code reading failed. First, edges of the bars, i.e. the white-to-black and black-to-white transitions
from background to bar and bar to background, are detected. Then the code is decoded according to the specified
symbology and finally several tests (’check’) are performed to ensure a correct result.

The errors with the codes (0),(8),(9) and (13) (’unknown status’, ’decoding: internal error when estimating the
maximum string length’, ’decoding: internal error when decoding a single character’ and ’decoding: error decoding
the reference to a human readable string’) are internal errors that should not occur. If they do, however, occur,
please contact your local HALCON distributor.

Warning messages (see page 167) occur either with a success message or with an error message. Warnings do not
prevent a successful code reading but are merely an indication for possible (future) problems.

B
ar

C
od

e

166 Bar Code

Error Message(s) Possible Solution
edges: not enough edges detected. Inspect the region by querying region and scan-

lines with the operators get_bar_code_object

and get_bar_code_result.
edges: not enough edges for a start, a stop and at
least one data character.
edges: too many edges detected.
edges: center of scanline not within domain. Change the ROI or use the operator full_domain

to search the whole image. If the posi-
tion of the code is known, the operator de-

code_bar_code_rectangle2 can be used to
specify the exact position.

decoding: could not find stop character. Check the found bar code region or in-
crease the number of scanlines with the
parameter num_scanlines of the operator
set_bar_code_param(_specific).

decoding: could not find start and stop characters.
decoding: number of wide bars of a single charac-
ter is not equal to 2.

Check if the right code type was specified as
’CodeType’ for the operator find_bar_code.

decoding: invalid encoding pattern.
decoding: invalid mix of character sets.
decoding: error decoding the reference to a human
readable string.
decoding: could not detect center guard pattern.
decoding: could not detect left and/or right guard
patterns.
decoding: could not detect add-on guard pattern.
decoding: could not detect enough finder patterns.
decoding: no segment found.
check: detected EAN-13 bar code type instead of
specified type.
check: checksum test failed. Check if the code even has a checksum. If it does

not, set the parameter ’check_char’ of the op-
erator set_bar_code_param_specific to ’ab-
sent’.

check: check of add-on symbol failed. Check if the code has an add-on symbol. If it does
not, change the ’CodeType’ of find_bar_code
to the non-add-on variant.

check: symbol region overlaps with another sym-
bol region.

The whole region is skipped because an-
other symbol region that overlaps with this
region has already been decoded. This is
no error. Set ’stop_after_result_num’

of the operator set_bar_code_param or
set_bar_code_param_specific to the number
of expected codes.

16.2.7 Check Print Quality

If you are interested in checking the print quality of your bar code symbols, you can use the HALCON operator
get_bar_code_result, which grades the symbol according to the standard ISO/IEC 15416:2016. For simple 1D
bar codes the print quality is described in a tuple with nine elements:

• Overall Quality,

• Decode,

• Symbol Contrast,

• Minimal Reflectance,

• Minimal Edge Contrast,

16.2 Extended Concept 167

Warning Message(s) Possible Solution
White spaces too wide. To improve image quality and pre-

vent errors, please refer to the
example program %HALCONEXAM-

PLES%\solution_guide\basics\

barcode_typical_cases.hdev.
White spaces too narrow.
Bars too wide.
Bars too narrow.
Possible saturation of gray values.
No composite component found. Check if the composite code is completely

within the image.

• Modulation,

• Defects,

• Decodability,

• and Additional Requirements.

Note that the names and the order of the grades can be queried with the convenience option
(query_isoiec15416_labels).

For composite bar codes, the print quality is described in a tuple with 24 elements, including components of both
bar code print quality grading and data code print quality grading as described for the method Data Code on page
175 or in more detail in the Solution Guide II-C in section 6 on page 45.

When investigating the reason for quality defects, it can be useful to query the data that was used to calculate the
values for the print quality elements. This is possible with the parameter quality_isoiec_15416_values which
returns a tuple with the raw values for the following grades: Symbol Contrast, Minimal Reflectance, Minimal Edge
Contrast, Modulation, Defects, and Decodability for simple bar codes, and Symbol Contrast, Minimal Reflectance,
Minimal Edge Contrast, Modulation, Defects, Decodability, Rap Contrast, Rap Minimal Reflectance, Rap Minimal
Edge Contrast, Rap Modulation, Rap Defects, Rap Decodability, Codeword Yield, and Unused Error Correction
for composite bar codes. For grades that are excluded from these lists the operator reports ’N/A’.

For further information on checking print quality of composite bar codes or regular bar codes, please refer to the
description of the operator get_bar_code_result in the reference manual.

16.2.8 Visualize Results

Finally, you might want to display the images, the bar code regions, and the decoded content.

For detailed information see the description of this method on page 223.
B

ar
C

od
e

168 Bar Code

16.3 Programming Examples

This section shows how to use the bar code reader.

16.3.1 How to Read Difficult Barcodes

Example: %HALCONEXAMPLES%/solution_guide/basics/barcode_typical_cases.hdev

When reading bar codes, there are a few conditions you have to consider. These conditions might have to do with
the code itself, for which you may, for example, have to use different parameters because it is very big or small,
or with the image acquisition environment affecting the image quality. Even though you should always aim for
achieving very good images, for technical reasons, it might sometimes not be possible to reach a perfect image
quality.

The following example can help you identify simple obstacles, find out at which stage of the bar code reading
process they occur, and it subsequently offers suggestions for solving the problem.

The different cases within the example are based on typical defects. There are no problems with reading the bar
code for case 0. It just presents the two stages at which intermediate results can be obtained (see figure 16.4).

You can query candidate regions to find out if the reader detects a bar code candidate at all with the local proce-
dure disp_bar_code_candidates. To query scanlines, it is necessary that a candidate region is found. You can
observe the scanlines with the local procedure disp_bar_code_scanlines. Both procedures use the operator
get_bar_code_object, setting either the parameter ’candidate_regions’, ’scanlines_all’ or ’scan-
lines_valid’, respectively.

a) b) c)

Figure 16.4: a) Original bar code image b) A candidate is detected. c) Valid scanlines are detected.

16.3 Programming Examples 169

Case 1 deals with a bar code in a very low contrast image (see figure 16.5). Subsequently, no candidates are found.
However, just one preprocessing step is necessary to overcome this obstacle. The knowledge that there is a defined
gray value difference between the code bars and the background leads to the solution. The single gray values lie,
however, very close together which makes it impossible for the reader to distinguish the code from the background.
The contrast can simply be improved by scaling the gray value range of the image with the convenience procedure
scale_image_range and therefore achieving a bright background and a black bar code again. To obtain the
scaling range, it is useful to check the gray histogram of the image.

scale_image_range (Image, ScaledImage, 0, 20)

a) b)

c) d)

Figure 16.5: a) A bar code with a very low contrast. b) Histogram of the low contrast image. c) Scaling gray values
make it possible to decode the bar code. d) The histogram of this image shows how the gray values
have been scaled.

After scaling the image, the code can be read and both candidate and scanlines are found.

B
ar

C
od

e

170 Bar Code

Case 2 shows another problem that is connected with illumination. The light distribution in the image is inhomoge-
neous (see figure 16.6). ’disp_bar_code_candidates’ does not detect the "whole" candidate first, because the
contrast diminishes in the darker parts of the image. Decreasing the value of ’meas_thresh’ makes it possible
to detect and read the whole bar code. It is, however, necessary to disable ’meas_thresh_abs’ first, because
’meas_thresh_abs’ sets a default threshold of 5.0, which is too high in this case.

set_bar_code_param (BarCodeHandle, 'meas_thresh_abs', 0.0)

set_bar_code_param (BarCodeHandle, 'meas_thresh', 0.02)

a) b)

Figure 16.6: a) Bar code with inhomogeneous illumination b) Decreasing ’meas_thresh’ makes the code readable.

16.3 Programming Examples 171

16.3.2 Reading a Bar Code on a CD

Example: %HALCONEXAMPLES%/hdevelop/Applications/Bar-Codes/circular_barcode.hdev

Figure 16.7 shows an image of a CD, on which a bar code is printed radially. The task is to read this circular bar
code. Because the bar code reader cannot read this kind of print directly, first the image must be transformed such
that the elements of the bar code are parallel.

b)

a)

Figure 16.7: (a) Original image with segmented ring; (b) rectified ring with decoded bar code.

The first step is to segment the dark ring on which the bar code is printed. This is performed using threshold

followed by closing_circle and connection. This segmentation returns all dark areas in the image, including
the dark ring. To select the ring, select_shape is used with corresponding values for the extent.

threshold (Image, Region, 0, 100)

closing_circle (Region, Region, 3.5)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, Ring, ['width', 'height'], 'and', [550, \

550], [750, 750])

After that, the parameters of the outer and the inner circle are determined. The outer circle can be determined
directly using shape_trans. The inner circle is more complicated to extract. Here, it is calculated by creating
the complement region of the ring with appropriate dimensions and then selecting its inner part. With small-

est_circle, the parameters of the inner and outer circle are determined.

shape_trans (Ring, OuterCircle, 'outer_circle')
complement (Ring, RegionComplement)

connection (RegionComplement, ConnectedRegions)

select_shape (ConnectedRegions, InnerCircle, ['width', 'height'], 'and', \

[450, 450], [650, 650])

smallest_circle (Ring, Row, Column, OuterRadius)

smallest_circle (InnerCircle, InnerRow, InnerColumn, InnerRadius)

The parameters for inner and outer circle are the input for the polar transform (polar_trans_image_ext), which
transforms the image inside the ring into a rectangular area. Then, the image is inverted to obtain dark bar code
elements on a light background (see figure 16.7b).

WidthPolar := 1440

HeightPolar := round(OuterRadius - InnerRadius - 10)

polar_trans_image_ext (Image, PolarTransImage, Row, Column, rad(360), 0, \

OuterRadius - 5, InnerRadius + 5, WidthPolar, \

HeightPolar, 'bilinear')
invert_image (PolarTransImage, ImageInvert)

To read the bar code, first a model is created with create_bar_code_model. As the bar code elements are
very thin, parameters are adjusted with the operator set_bar_code_param. In particular, the parameter ’ele-

B
ar

C
od

e

172 Bar Code

ment_size_min’ is set to 1.5 and the parameter ’meas_thresh’ is set to 0.1. Then, find_bar_code finds and
decodes the bar code, which is of the specified code type ’Code 128’.

create_bar_code_model ([], [], BarCodeHandle)

set_bar_code_param (BarCodeHandle, 'element_size_min', 1.5)

set_bar_code_param (BarCodeHandle, 'meas_thresh', 0.3)

find_bar_code (ImageZoomed, SymbolRegions, BarCodeHandle, 'Code 128', \

DecodedDataStrings)

Finally, the region of the bar code that was returned by find_bar_code is transformed back to the original shape
of the bar code by polar_trans_region_inv and is displayed in the image.

polar_trans_region_inv (SymbolRegions, CodeRegionCircular, Row, Column, \

rad(360), 0, OuterRadius - 5, InnerRadius + 5, \

WidthPolar, HeightPolar, Width, Height, \

'nearest_neighbor')
dev_display (CodeRegionCircular)

16.3.3 Checking Bar Code Print Quality

Example: %HALCONEXAMPLES%/hdevelop/Identification/Bar-Code/print_quality_isoiec15416.hdev

This example checks the print quality of bar codes, according to the ISO/IEC 15416:2016 standard, for contrast,
minimal reflectance, modulation, minimal edge contrast, defects, decodability and additional requirements.

This program will be explained exemplarily, using the "Contrast" grade, which checks whether the range between
the minimal and the maximal value in the reflectance profile is lower or equal to 0.5 of the maximal reflectance
value. Otherwise, a value of 0 is assigned as you can see in figure 16.8. Furthermore, the program returns raw
values for some quality grades to investigate the reason for quality defects.

First, the data code is detected in the image, then the operator get_bar_code_result checks the print quality of
the code.

find_bar_code (ImageDefect, SymbolRegions, BarCodeHandle, 'EAN-13', \

DecodedDataStrings)

get_bar_code_result (BarCodeHandle, 0, 'quality_isoiec15416_float_grades', \

Quality)

Finally, the result is displayed in a message.

min_max_gray (SymbolRegions, ImageDefect, 0, Min, Max, Range)

Contrast := Range / 255

dev_display (ImageDefect)

dev_set_color ('green')
dev_display (SymbolRegions)

grade_message_text (Labels, Quality, QualityValues, GRADE_CONTRAST, Message)

disp_message (WindowHandle, Message, 'window', 10, 12, 'black', 'true')

The program repeats these checks for the print quality features listed above. For more informa-
tion concerning composite codes view the example %HALCONEXAMPLES%/hdevelop/Identification/Bar-

Code/composite_print_quality_isoiec15416.hdev.

16.4 Relation to Other Methods

16.4.1 Alternatives to Bar Code

OCR (see description on page 183)
With some bar codes, e.g., the EAN 13, the content of the bar code is printed in plain text below the elements.
Here, OCR can be used, e.g., to check the consistency of the reading process.

16.5 Advanced Topics 173

a) b)

Figure 16.8: a) The bar code with a high contrast gets the grade 4 and a raw value of 82.45%. b) The defective bar
code with a very low contrast gets the grade 0 and a raw value of 15.84%.

16.5 Advanced Topics

16.5.1 Use Timeout

With the operator set_bar_code_param, you can set a timeout. Then, the operator find_bar_code will return
at the latest after the specified time. This mechanism is demonstrated for Matching (Shape-Based) in the example
%HALCONEXAMPLES%/hdevelop/Matching/Shape-Based/set_shape_model_timeout.hdev.

B
ar

C
od

e

174 Bar Code

Data Code 175

Chapter 17

Data Code

Data codes are a special kind of two-dimensional patterns that encode text and numbers. HALCON is able to
read the most popular data codes: Data Matrix ECC 200, QR Code, Micro QR Code, Aztec Code, PDF417, and
DotCode. Depending on the code type, the symbols consist of multiple dots or small squares, which encode
information according to the individual code specifications. Because of the special design of the codes, they can
be decoded even if some parts are disturbed.

The advantage of the HALCON data code reader is its ease of use. No advanced experience in programming or
image processing is required. Only a few operators in a clear and simple order need to be applied. Furthermore,
the data code reader is very powerful and flexible. Examples for this are its ability to read codes in many print
styles and the possibility to automatically learn optimal parameters.

17.1 Basic Concept

Data code reading consists mainly of these steps:

Read Data Code(s)

Use Region Of Interest

Create Data Code Model

Acquire Image(s)

17.1.1 Acquire Image(s)

For the online part, i.e., during reading, images are acquired.

For detailed information see the description of this method on page 21.

17.1.2 Create Data Code Model

First, you create a data code model with the operator create_data_code_2d_model. This model provides the
reader with all necessary information about the structure of the code. For normal printed codes only the name
needs to be provided and HALCON will select suitable default parameters. For special cases, you can modify the
model by passing specific parameters.

D
at

a
C

od
e

176 Data Code

17.1.3 Read Data Code(s)

To read a data code, just one operator is needed: find_data_code_2d. It will locate one or more data codes and
decode the content.

17.1.4 A First Example

As an example for this basic concept, here a very simple program, which reads the data code on the chip depicted
in figure 17.1, is discussed.

Figure 17.1: Reading a data code.

After reading an image from file, the data code model is generated by calling create_data_code_2d_model. As
the only required parameter value, the code name ’Data Matrix ECC 200’ is specified.

create_data_code_2d_model ('Data Matrix ECC 200', [], [], DataCodeHandle)

Then, the data code is read with the operator find_data_code_2d.

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

17.2 Extended Concept

In some cases, data code reading can be more advanced than in the example above. Reasons for this are, e.g.,
parameter optimization for improved execution time. Furthermore, preprocessing like rectification or the visual-
ization of results might be required. The following sections give a brief overview. More detailed information can
be found in the Solution Guide II-C.

17.2.1 Acquire Image(s)

Optionally, additional images can be acquired for parameter optimization (see the description of the step Optimize
Model on page 178).

For detailed information see the description of this method on page 21.

17.2 Extended Concept 177

Visualize Results

Check Print Quality

Inspect Data Code(s)

Read Data Code(s)

Use Region Of Interest

Train Model

Optimize Model

Create Data Code Model

Rectify Image(s)

Acquire Image(s)

17.2.2 Rectify Image(s)

HALCON’s data code reader is robust against image distortions up to a certain limit. But if the data code is printed
on a cylindrical surface or if the camera is tilted relative to the surface, it might be necessary to rectify the image
before applying the data code reader.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on page 80.

17.2.3 Create Data Code Model

The operator create_data_code_2d_model expects the name of the desired code and optionally parameters to
specify the geometry and radiometry as input. By default, a parameter set is used that is suitable for data codes
that fulfill the following requirements:

• The code must be printed dark on light,

• the contrast must be bigger than 30,

• the sizes of symbol and modules are in a certain range (which depends on the selected symbol type),

• there is no or only a small gap in between neighboring modules of matrix codes (for PDF417 no gap is
allowed),

• for QR Codes, additionally all three position detection patterns must be visible,

• for Micro QR Codes, the single position detection pattern must be visible, and

• for Aztec Codes, the position detection pattern must be visible as well.

D
at

a
C

od
e

178 Data Code

This parameter set is also used if you specify the value ’standard_recognition’ for the parameter GenParam-
Values. In contrast, if you specify the value ’enhanced_recognition’, a parameter set is used that detects
codes that do not follow the rules given above. If you choose the value ’maximum_recognition’ even more data
codes will be detected. However, using the parameter sets of enhanced mode and maximum mode possibly results
in a longer processing time.

17.2.4 Optimize Model

Using the default parameters, the data code reader is able to read a wide range of codes. For non-standard codes
the parameters can be adapted accordingly. For this, the operator set_data_code_2d_param is used.

The easiest way is to use the parameter value ’enhanced_recognition’, which uses a model that is able to find
a very wide range of print styles. An alternative is to specify parameter values separately to adapt the model to the
conditions of the used print style.

If a data code symbol is not detected although it is well visible in the image, check whether the symbol’s appearance
complies with the model. In particular, have a look at the polarity (’polarity’: dark-on-light or light-on-dark),
the module size (’module_size’ and ’module_shape’) and the minimum contrast (’contrast_min’). In
addition, the parameters ’module_gap’ (allowed gap between modules), ’symbol_size’, and ’slant_max’

(angle variance of the legs of the finder pattern) should be checked. The current settings of all applicable parameters
can be queried by the operator get_data_code_2d_param.

All possible parameter values can be checked in the Reference Manual. Besides this, they can also be queried with
the operator query_data_code_2d_params.

As an alternative, you can train the model (see below).

17.2.5 Train Model

Instead of modifying the model parameters manually as described above, you can also let HALCON train the
model automatically using the operator find_data_code_2d. All you need to do is to call this operator with the
parameter values ’train’ and ’all’. Then, HALCON will search for the best parameters needed to extract the
given code. It is recommended to apply this to multiple example images to ensure that all variations are covered.

As an alternative, you can execute the finder with normal parameters and request the features of the found
symbols with get_data_code_2d_results. These values can then be used to change the model with
set_data_code_2d_param.

17.2.6 Use Region Of Interest

Reading data codes can be sped up by using a region of interest. The more the region in which codes are searched
can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 25.

17.2.7 Read Data Code(s)

The operator find_data_code_2d returns for every successfully decoded symbol the surrounding XLD con-
tour in SymbolXLDs, a handle to a result structure, which contains additional information about the symbol as
well as about the search and decoding process (ResultHandles), and the string that is encoded in the sym-
bol (DecodedDataStrings). With the result handles and the operators get_data_code_2d_results and
get_data_code_2d_objects, additional data about the extraction process can be accessed.

17.2.8 Inspect Data Code(s)

Using the handles of the successfully decoded symbols returned by find_data_code_2d, you can request addi-
tional information about the symbol and the finding process using the operators get_data_code_2d_results
and get_data_code_2d_objects. This is useful both for process analysis and for displaying.

17.3 Programming Examples 179

In addition, information about rejected candidates can also be queried by requesting the corresponding handles
with get_data_code_2d_results using, e.g., the parameter values ’all_undecoded’ and ’handle’.

The operator get_data_code_2d_results gives access to several alphanumerical results that were calculated
while searching and reading the data code symbols. Besides basic information like the dimensions of the code, its
polarity, or the found contrast, also the raw data can be accessed.

The operator get_data_code_2d_objects gives access to iconic objects that were created while searching and
reading the data code symbols. Possible return values are the surrounding contours or the regions representing the
foreground or background modules.

17.2.9 Check Print Quality

If your first aim is not to quickly read the 2D data code symbols but to check how good they were printed, you
can query the print quality of a symbol (except for DotCode symbols) in accordance to the standards ISO/IEC
15415:2011 or AIM DPM-1-2006. For details, see the Solution Guide II-C in section 6 on page 45.

17.2.10 Visualize Results

Finally, you might want to display the images, the data code regions, and the decoded content.

For detailed information see the description of this method on page 223.

17.3 Programming Examples

This section gives a brief introduction to the programming of the data code reader.

17.3.1 Training a Data Code Model

Example: %HALCONEXAMPLES%/hdevelop/Identification/ecc200_training.hdev

a) b) c)

Figure 17.2: (a) Dark training image; (b) bright training image; (c) read code.

In this example we show how easy it is to train a data code model, here to allow changes in the illumination of the
images. To prepare the reading of the data codes, the following major steps are performed: First, a model for 2D
data codes of type ECC 200 is created with create_data_code_2d_model.

create_data_code_2d_model ('Data Matrix ECC 200', [], [], DataCodeHandle)

Then, two sample images are loaded and passed to find_data_code_2d with the parameter value ’train’ to get
the optimal parameters for finding the data code.

D
at

a
C

od
e

180 Data Code

* Dark image

read_image (Image, 'datacode/ecc200/ecc200_cpu_007')
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

* Bright image

read_image (Image, 'datacode/ecc200/ecc200_cpu_008')
find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, 'train', 'all', \

ResultHandles, DecodedDataStrings)

Inside the for-loop, images are read and find_data_code_2d is applied to read the code from the image. For
further information, we also measure the time needed to run the operator find_data_code_2d. After that, the
XLD contour of the symbol, the decoded data string, and the runtime are visualized.

for Index := 7 to 16 by 1

read_image (Image, ImageFiles + Index$'.2d')
dev_display (Image)

*

* Find and decode the data codes and measure the runtime

count_seconds (T1)

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], \

ResultHandles, DecodedDataStrings)

count_seconds (T2)

Time := 1000 * (T2 - T1)

*

* Display the results

TitleMessage := 'Image ' + (Index - 6) + ' of ' + (ImageNum - 6)

ResultMessage := 'Data code found in ' + Time$'.1f' + ' ms'
display_found_data_codes (SymbolXLDs, WindowHandle, DecodedDataStrings, \

TitleMessage, ResultMessage, 'forest green', \

'black')
endfor

17.3.2 Reading 2D Data Codes on Chips

Example: %HALCONEXAMPLES%/hdevelop/Applications/Data-Codes/ecc200_optimized_settings.hdev

This example program reads 2D data codes of type ECC200, which like the example described before are engraved
in chips (see figure 17.3).

Figure 17.3: Decoded data code.

The example shows how to set optimized parameters for efficient data code reading. The code printed on a chip is
always light on dark in this application and has a given size and number of modules. Also, the contrast is within a
predefined range. By specifying these values for the model, the execution can be sped up significantly.

17.4 Advanced Topics 181

create_data_code_2d_model ('Data Matrix ECC 200', [], [], DataCodeHandle)

set_data_code_2d_param (DataCodeHandle, 'symbol_size', 18)

set_data_code_2d_param (DataCodeHandle, ['module_size_min', \

'module_size_max'], [4, 7])

set_data_code_2d_param (DataCodeHandle, 'module_gap', 'no')
set_data_code_2d_param (DataCodeHandle, 'polarity', 'light_on_dark')
set_data_code_2d_param (DataCodeHandle, 'mirrored', 'no')
set_data_code_2d_param (DataCodeHandle, 'contrast_tolerance', 'high')
set_data_code_2d_param (DataCodeHandle, 'candidate_selection', 'extensive')
set_data_code_2d_param (DataCodeHandle, 'module_grid', 'any')

find_data_code_2d (Image, SymbolXLDs, DataCodeHandle, [], [], ResultHandles, \

DecodedDataStrings)

17.4 Advanced Topics

17.4.1 Use Timeout

With the operator set_data_code_2d_param, you can set a timeout. Then, the operator find_data_code_2d
will return at the latest after the specified time. This mechanism is demonstrated for Matching (Shape-Based) in
the example %HALCONEXAMPLES%/hdevelop/Matching/Shape-Based/set_shape_model_timeout.hdev.

D
at

a
C

od
e

182 Data Code

OCR (character classification) 183

Chapter 18

OCR (character classification)

Optical Character Recognition (OCR) is the technical term for reading, i.e., identifying symbols. In HALCON,
OCR is defined as the task to assign an interpretation to regions of an image. This chapter considers methods
where these regions typically represent single characters and therefore we consider this as reading single symbols.
A different approach is introduced in Chapter Deep OCR on page 209.

In an offline phase, the characters are trained by presenting several samples for each character. In the online phase,
the image is segmented to extract the regions representing the characters and then the OCR reader is applied to get
the interpretation for each character.

Figure 18.1 shows the principal steps. The first part is offline and consists of collecting training samples and, after
that, applying the training. The online part consists of extracting the characters and then reading them.

selection of training charactersimage

training of a font file

reading of charactersimage

creation of training files

Offline

Online

Figure 18.1: Main steps of OCR.

The advantage of OCR is the flexibility of the training, which allows to select features optimized for an application.
Furthermore, you can choose between different classifiers that are based on latest technologies and provide the best
possible performance.

As a further advantage, HALCON provides you with a set of pretrained fonts, which are based on a large amount
of training data from various application areas. These fonts allow you to read text in documents, on pharmaceutical
or industrial products, dot prints, and even handwritten numbers. Furthermore, HALCON includes pretrained fonts
for OCR-A and OCR-B, and a generic font based on Convolutional Neural Networks (CNNs).

O
C

R
I

184 OCR (character classification)

18.1 Basic Concept

The OCR is split into two major parts: training and reading. Each of these major parts requires additional prepara-
tion steps:

Read Symbol

Train OCR

Segment Image(s)

Use Region Of Interest

Acquire Image(s)

18.1.1 Acquire Image(s)

Both for the generation of training data and for the OCR itself images must be acquired.

For detailed information see the description of this method on page 21.

18.1.2 Segment Image(s)

Both for the training samples and for the online reading process, characters must be extracted from the image. This
step is called segmentation. This means that the OCR operators like do_ocr_single_class_svm do not search
for the characters within a given region of interest, but expect a segmented region, which then will be classified.

If the samples for training are taken from real application images, the same segmentation method will be applied
for both training and reading. If the training images are more “artificial”, a simpler method might be used to
segment the training images.

18.1.3 Train OCR

The training consists of two important steps: First, a number of samples for each character is selected and stored
in so-called training files. In the second step, these files are input for a newly created OCR classifier.

As already noted, HALCON provides pretrained fonts, i.e., ready-to-use classifiers, which already solve many
OCR applications. These fonts can be found in the subdirectory ocr of the directory where you installed HALCON.

18.1.4 Read Symbol

For reading, you only have to read the trained classifier from disk, segment the characters from the image, and use
the segmented characters as input for one of the reading operators that will be discussed later.

18.1.5 A First Example

An example for this basic concept is the following program, which uses one of the pretrained fonts provided by
HALCON to read the numbers in the image depicted in figure 18.2.

18.2 Extended Concept 185

Figure 18.2: Applying a pretrained classifier.

First, the pretrained font Document_0-9 is read using read_ocr_class_mlp. As no file extension is specified, it
is searched for a file with the MLP specific extension “.omc” or with the extension “.fnt”.

FontFile := 'Document_0-9_NoRej'
read_ocr_class_mlp (FontFile, OCRHandle)

Then, the numbers are segmented using threshold and connection. Because the order is irrelevant here, no
further processing is applied.

read_image (Image, 'numbers_scale')
threshold (Image, Region, 0, 125)

connection (Region, Characters)

Finally, the numbers are read in a for-loop. The operator do_ocr_single_class_mlp takes the single region,
the image, and the OCR handle as input. As a result the best and the second best interpretation together with the
confidences are returned.

count_obj (Characters, Number)

dev_set_color ('white')
for i := 1 to Number by 1

select_obj (Characters, SingleChar, i)

do_ocr_single_class_mlp (SingleChar, Image, OCRHandle, 2, Class, \

Confidence)

endfor

Note that this examples was chosen for didactic reasons only. It clearly shows the two main parts of each OCR
application: segmentation and classification. Typically, the Automatic Text Reader (see section 18.2.6 on page
187) should be used for OCR applications, because it is much easier to use. The Automatic Text Reader combines
the two steps segmentation and classification into one call of the operator find_text. The above example can
then be reduced to a few lines of code (see section 18.3.3 on page 193).

18.2 Extended Concept

When we look more closely at the OCR, many possibilities for adaptation to specific applications become apparent.
For example, we have to consider an efficient way of collecting samples as well as correct parameters for the
training. In the online phase, an optimal segmentation method is required to extract all characters in a robust
manner.

18.2.1 Use Region of Interest

The OCR can be sped up by using a region of interest. The more the region in which the characters are searched
can be restricted, the faster and more robust the search will be.

For detailed information see the description of this method on page 25.

O
C

R
I

186 OCR (character classification)

Visualize Results

Read Symbol

Train OCR

Segment Image(s)

Extract Segmentation
Parameters

Preprocess Image(s)
(Filtering)

Rectify Image(s)

Align ROIs or Images

Use Region of Interest

Acquire Image(s)

18.2.2 Align ROIs or Images

Because the reading of characters is not invariant to rotation, it may be necessary to correct the orientation of
the image. This can be achieved either by directly determining the orientation of the text using the operator
text_line_orientation, or by locating another object. Then, the part of the image containing the characters is
cropped and aligned using the orientation of the text or the found object.

How to perform alignment using shape-based matching is described in the Solution Guide II-B in section 2.5.3.2
on page 35.

18.2.3 Rectify Image(s)

Similarly to alignment, it may be necessary to rectify the image, e.g., to remove perspective distortions. For slanted
characters, the slant angle can be determined using the operator text_line_slant.

Detailed information about rectifying images can be found in the Solution Guide III-C in section 3.4 on page 80.

18.2.4 Preprocess Image(s) (Filtering)

Sometimes, the characters may be difficult to extract because of noise, texture, or overlaid structures. Here,
operators like mean_image or gauss_filter can be used to eliminate noise. A fast but slightly less perfect
alternative to gauss_filter is binomial_filter. The operator median_image is helpful for suppressing small
spots or thin lines. The operator dots_image is optimized to emphasize a dot-print while suppressing other

18.2 Extended Concept 187

structures in the image. Gray value morphology can be used to eliminate noise structures and to adapt the stroke
width of characters.

18.2.5 Extract Segmentation Parameters

When segmenting the characters with blob analysis, instead of using fixed threshold values, the values can be
extracted dynamically for each image. For more details, please refer to the description of this step on page 35.
Another possibility is the use of the Automatic Text Reader, which is described below.

18.2.6 Segment Image(s)

For the segmentation, various methods can be used. The Automatic Text Reader is very easy to use and provides
robust results. It combines the two steps segmentation and classification into one call of the operator find_text.
The Manual Text Finder can read engraved text, which cannot be read by the Automatic Text Reader, but it
needs a greater effort in setting the parameters. Therefore, the Automatic Text Reader should be used, if possible.
Both methods use a text model, which can be specified precisely. Two other common segmentation methods are
described under ’General Character Segmentation’.

Segmentation with the Automatic Text Reader

The Automatic Text Reader segments and classifies text robustly, typically without the need for extensive parame-
ter tuning. %HALCONEXAMPLES%/solution_guide/basics/simple_reading.hdev (see page 193) and %HAL-

CONEXAMPLES%/hdevelop/Applications/OCR/bottle.hdev (see page 193) provide a good starting point to
become familiar with the Automatic Text Reader.

For using the Automatic Text Reader, a model must be created with create_text_model_reader with the pa-
rameter Mode set to ’auto’. Here, an OCR classifier must already be passed. Segmentation parameters can then
be specified with the operator set_text_model_param and can be queried with get_text_model_param. After
this preparation, the text can be read with the operator find_text. This operator selects character candidates
based on region and gray-value features and verifies them with the given OCR classifier. The character candidates
are then further combined to lines which are subsequently tested if they qualify as a text line.

If the text must match a certain pattern or structure, the parameter ’text_line_structure’ of the operator
set_text_model_param can be set, which determines the structure, i.e., the number of characters for each char-
acter block of the text that shall be detected.

The Automatic Text Reader assumes approximately horizontal text. If the text is not horizontally aligned, the
operators text_line_orientation and rotate_image can be used before the use of find_text.

The result of find_text is returned in TextResultID, which can be queried with get_text_result and
get_text_object, respectively. get_text_result returns, e.g., the classification result. get_text_object

returns the iconic result of the Automatic Text Reader, i.e., the character regions. To delete the result and the text
model, use the operators clear_text_result and clear_text_model, respectively.

Please refer to the Reference Manual of the above mentioned operators for more information about their parame-
ters.

Segmentation with the Manual Text Finder

If engraved text must be segmented or if no suitable OCR classifier can be provided, the Automatic Text Reader
cannot be used. Instead, the Manual Text Finder can be used in these cases.

In order to segment images robustly, the parameters of the Manual Text Finder should be set carefully. For
a practical introduction to the Manual Text Finder, please refer to the HDevelop example %HALCONEXAM-

PLES%/hdevelop/Applications/OCR/find_text_dongle.hdev and the corresponding example description
page 196.

For using the Manual Text Finder, a model must be created with create_text_model_reader with the parameter
Mode set to ’manual’. Note that no OCR classifier must be passed in this case. Segmentation parameters should
then be specified with the operator set_text_model_param and can be queried with get_text_model_param.
Note that the names of all parameters that can be used with the Manual Text Finder start with ’manual_’. After this

O
C

R
I

188 OCR (character classification)

preparation, the text can be segmented with the operator find_text. This operator selects character candidates
based on region and gray-value features. The character candidates are then further combined to lines which are
subsequently tested if they qualify as a text line.

If the text must match a certain pattern or structure, the parameter ’manual_text_line_structure’ of the
operator set_text_model_param can be set, which determines the structure, i.e., the number of characters for
each character block of the text that shall be detected.

The Manual Text Finder assumes approximately horizontal text. If the text is not horizontally aligned, the operators
text_line_orientation and rotate_image can be used before the use of find_text.

The result of find_text is returned in TextResultID which can be queried with get_text_result

and get_text_object, respectively. get_text_result returns, e.g., the number of found text lines.
get_text_object returns the iconic result of the Manual Text Finder, i.e., the character regions, which can
then be classified with a suitable OCR classifier. To delete the result and the text model, use the operators
clear_text_result and clear_text_model, respectively.

Please refer to the Reference Manual of the above mentioned operators for more information about their parame-
ters.

General Character Segmentation

For the common character segmentation you can either use the operator segment_characters to get a region
containing all character candidates and then apply select_characters to select those parts of the region that are
candidates for the individual characters, or you use blob analysis. There, the most simple method is the operator
threshold, with one or more gray value ranges specifying the regions that belong to the foreground objects.
Another very common method is dyn_threshold. Here, a second image is passed as a reference. With this
approach a local instead of a global threshold is used for each position. Further information can be found in the
description of this step for blob analysis on page 34.

18.2.7 Train OCR

Figure 18.3 shows an overview on the generation of the training files: First, the characters from sample images
must be extracted using a segmentation method (see above). To each of the single characters a name must be
assigned. This can be done either by typing it in, by a programmed input in the case of a well-structured image
(having, e.g., multiple samples of each character in different lines), or by reading the character names from file.
Then, the regions together with their names are written into training files. The most convenient operator to do this
is append_ocr_trainf. Before applying the training, we recommend to check the correctness of the training
files. This can, e.g., be achieved by using the operator read_ocr_trainf combined with visualization operators.

Note that you can also train your own system fonts. By altering and distorting the characters of a font, you can
increase the number of different training samples for each class and thus also increase the detection rate. For this,
the Training File Browser of HDevelop’s OCR Assistant can be used. See HDevelopUser’s Guide, section 6.10
on page 86 for a detailed description of the Training File Browser. Furthermore, also the example program %HAL-

CONEXAMPLES%/hdevelop/Applications/OCR/generate_system_font.hdev shows how to derive training
data and an OCR classifier from system fonts.

The actual training is depicted in figure 18.4. First, a new classifier is created. There are four different OCR
classifiers available: a neural network (multi-layer perceptron or MLP) classifier, a classifier based on support
vector machines (SVM), a classifier based on the k-nearest neighbor approach (k-NN), and the box classifier.

Note that if you want to use the Automatic Text Reader for the segmentation and classification of text, you must
provide an MLP-based OCR classifier. Otherwise, an OCR classifier based on MLP, SVM, or k-NN can be used.
The k-NN has advantages when only few samples are available, but is outperformed by MLP and SVM in typical
OCR applications. Thus, only MLP and SVM are described further in this manual. Please refer to the Solution
Guide II-D, section 7.5 on page 86 for more information on how to use the k-NN classifier for OCR applications.

The two recommended classifiers differ as follows: The MLP classifier is fast at classification, but for a large
training set slow at training (compared to the classifier based on SVM). If the training can be applied offline and
thus is not time critical, MLP is a good choice. The classifier based on SVM leads to slightly better recognition
rates than the MLP classifier and is faster at training (especially for large training sets). But, compared to the MLP
classifier, the classification needs more time.

18.2 Extended Concept 189

regions

segmentation

image

combination

training file (*.trf) training file inspection

character names programmed

user interaction

reading text file

Figure 18.3: Creating training files.

Dependent on the chosen classifier, you create the classifier using create_ocr_class_mlp or cre-

ate_ocr_class_svm. Then, the training is applied using trainf_ocr_class_mlp or trainf_ocr_class_svm.
After the training, you typically save the classifier to disk for later use by write_ocr_class_mlp or
write_ocr_class_svm.

training

saving

trained OCR classifier

testing

training file (*.trf) new OCR classifier

font file (*.omc or *.osc)

Figure 18.4: Training an OCR classifier.

18.2.8 Read Symbol

Figure 18.5 shows an overview on the reading process. First, the characters must be extracted using an appropriate
segmentation method. Here, you must use a method that returns the characters in a form similar to the ones used
for training. After reading the classifier (font file) from file (read_ocr_class_mlp or read_ocr_class_svm),
the classifier can be used for reading. The Automatic Text Reader performs the two steps segmentation and
classification together in one single step.

For reading multiple operators are provided: In the easiest case, multiple characters are passed to the reading opera-
tors (do_ocr_multi_class_mlp or do_ocr_multi_class_svm). Here, for each region the corresponding name
and the confidence are returned. Sometimes, it can be necessary not only to obtain the characters with the highest
confidence but also others with lower confidences. A zero, e.g., might easily be mistaken for the character “O”.
This information is returned by the operators do_ocr_single_class_mlp and do_ocr_single_class_svm.

O
C

R
I

190 OCR (character classification)

segmentation

regions

classification

symbols grouping text

image

(*.omc or *.osc)
font file

Figure 18.5: Reading characters.

As a final step it might be necessary to group digits to numbers or characters to words. This can be realized with
the region processing operators like those described for the method blob analysis on page 36.

Additionally, HALCON provides operators for a syntactic and lexicon-based auto-correction. For example, you
can use the operator do_ocr_word_mlp instead of do_ocr_multi_class_mlp to find sets of characters, i.e.,
words, that match a regular expression or that are stored in a lexicon, which was created by create_lexicon or
imported by import_lexicon.

18.2.9 Visualize Results

Finally, you might want to display the images, the blob (regions), and the result of the reading process.

For detailed information see the description of this method on page 223.

18.3 Programming Examples

This section gives a brief introduction to using HALCON for OCR. All important steps from training file generation
over training to reading are presented.

18.3.1 Generating a Training File

Example: %HALCONEXAMPLES%/solution_guide/basics/gen_training_file.hdev

Figure 18.6 shows a training image from which the characters in the third line are used as training samples.
For this example image, the segmentation is very simple because the characters are significantly darker than the
background. Therefore, threshold can be used.

The number of the line of characters that is used for training is specified by the variable TrainingLine. To select
this line, first the operator closing_rectangle1 is used to combine characters horizontally into lines. These lines
are then converted to their connected components with connection. Out of all lines the relevant one is selected
using select_obj. By using intersection with the original segmentation and the selected line as input, the
characters for training are returned. These are sorted from left to right, using sort_region.

18.3 Programming Examples 191

Figure 18.6: Collecting characters for a training file.

TrainingLine := 3

threshold (Image, Region, 0, 125)

closing_rectangle1 (Region, RegionClosing, 70, 10)

connection (RegionClosing, Lines)

select_obj (Lines, Training, TrainingLine)

intersection (Training, Region, TrainingChars)

connection (TrainingChars, ConnectedRegions)

sort_region (ConnectedRegions, SortedRegions, 'first_point', 'true', \

'column')

Now, the characters can be stored in the training file. As a preparation step a possibly existing older training file is
deleted. Within a loop over all characters the single characters are selected. The variable Chars contains the names
of the characters as a tuple of strings. With the operator append_ocr_trainf the selected regions, together with
the gray values and the corresponding name, are added to the training file.

Chars := ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
TrainFile := 'numbers.trf'
dev_set_check ('~give_error')
delete_file (TrainFile)

dev_set_check ('give_error')
for i := 1 to 10 by 1

select_obj (SortedRegions, TrainSingle, i)

append_ocr_trainf (TrainSingle, Image, Chars[i - 1], TrainFile)

endfor

18.3.2 Creating and Training an OCR Classifier

Example: %HALCONEXAMPLES%/solution_guide/basics/simple_training.hdev

Having prepared the training file, the creation and training of an OCR classifier is very simple. First, the names of
the training file and the final font file are determined. Typically, the same base with different extensions is used.
We recommend to use “.trf” for training files. For font files i.e., for OCR classifiers, we recommend to use “.obc”
for the box classifier (which is not recommended anymore), “.omc” for the neural network classifier , and “.osc”
for the classifier based on support vector machines. If no extension is specified during the reading process, for the
box or neural network classification it is also searched for files with the extension “.fnt”, which was common for
both classifiers in earlier HALCON versions.

To create an OCR classifier, some parameters need to be determined. The most important one is the list of
all possible character names. This list can easily be extracted from the training file by using the operator
read_ocr_trainf_names.

TrainFile := 'numbers.trf'
read_ocr_trainf_names (TrainFile, CharacterNames, CharacterCount)

Another important parameter is the number of nodes in the hidden layer of the neural network. In this case, it is
set to 20. As a rule of thumb, this number should be in the same order as the number of different symbols. Besides
these two parameters, here only default values are used for create_ocr_class_mlp. The training itself is applied
using trainf_ocr_class_mlp. We recommend to simply use the default values here as well.

O
C

R
I

192 OCR (character classification)

NumHidden := 20

create_ocr_class_mlp (8, 10, 'constant', 'default', CharacterNames, \

NumHidden, 'none', 1, 42, OCRHandle)

trainf_ocr_class_mlp (OCRHandle, TrainFile, 200, 1, 0.01, Error, ErrorLog)

Finally, the classifier is stored to disk.

FontFile := 'numbers.omc'
write_ocr_class_mlp (OCRHandle, FontFile)

Note that for more complex OCR classifiers, i.e., especially, if the training data contains also very noisy and
deformed samples, it is recommended to create an MLP-based OCR classifier with regularization of the internal
weights (see set_regularization_params_ocr_class_mlp). This enhances the generalization ability of the
classifier and prevents an over-fitting to individual degraded training samples.

If an OCR classifier is created for the Automatic Text Reader, it is recommended to additionally define a rejection
class with set_rejection_params_ocr_class_mlp, which helps to distinguish characters from background
clutter.

18.3.2.1 OCR Classifiers with Regularization and Rejection Class

It is also possible to create and train a classifier with regularized weights as well as rejection class.

Regularized weights can improve the classification:

• If an unregularized MLP makes an error, the confidence of the wrong result will often be very high.

• If a regularized MLP makes an error, it returns an intuitive confidence. This indicates a much better gener-
alization capability.

Parameters for regularization can be set and queried with the operators

• set_regularization_params_ocr_class_mlp and

• get_regularization_params_ocr_class_mlp.

Please refer to the reference documentation of these operators for more information.

How to set the parameters for creating and training of classifiers with regularization is shown in the following
HDevelop examples:

• The example %HALCONEXAMPLES%/hdevelop/Applications/OCR/Neural-

Nets/regularized_ocr_mlp.hdev creates test samples with heavy distortions that are far outside
the range of trained distortions to test the generalization capabilities of the MLP and the regularized MLP.

• The example %HALCONEXAMPLES%/hdevelop/Classification/Neural-

Nets/mlp_regularization.hdev shows the effect of regularizing an MLP using two-dimensional
data.

A rejection class may be useful since it returns symbols in an image that could not be successfully read either
because they are not symbols but, e.g., noise, or because there is a problem with the classification.

Parameters for the rejection class can be set and queried with the operators

• set_rejection_params_ocr_class_mlp and

• get_rejection_params_ocr_class_mlp.

Please refer to the reference documentation of these operators for more information.

The example program %HALCONEXAMPLES%/hdevelop/Applications/Classification/Neural-

Nets/set_rejection_params_class_mlp.hdev shows how to use a rejection class for an MLP for
classifying two-dimensional data.

18.3 Programming Examples 193

18.3.3 Reading Numbers

Example: %HALCONEXAMPLES%/solution_guide/basics/simple_reading.hdev

This example program demonstrates how to read simple text with the Automatic Text Reader (see section 18.2.6 on
page 187) using a pretrained OCR font. It reads the numbers in the image numbers_scale depicted in figure 18.2.
Instead of a manual segmentation of the numbers with the operators threshold and connection followed by a
classification of the segmented regions, the Automatic Text Reader is used to read the numbers in one single step
without the need for any parameter tuning, simply with the operator find_text.

create_text_model_reader ('auto', 'Document_0-9_NoRej', TextModel)

find_text (Image, TextModel, TextResultID)

get_text_result (TextResultID, 'class', Classes)

18.3.4 "Best Before" Date

Example: %HALCONEXAMPLES%/hdevelop/Applications/OCR/bottle.hdev

The task of this example is to inspect the "best before" date on the bottle depicted in figure 18.7.

a) b)

Figure 18.7: (a) Original image; (b) read date.

Again, this task is solved with the Automatic Text Reader (see section 18.2.6 on page 187). Because a lot of
text is visible in the image, it is necessary to set some parameters of the text model to restrict the reading result
appropriately.

First, the Automatic Text Reader is created with a pretrained OCR font:

create_text_model_reader ('auto', FontName, TextModel)

The minimum stroke width is increased to suppress all the text that is visible in the surroundings of the "best
before" date:

set_text_model_param (TextModel, 'min_stroke_width', 6)

The known structure of the "best before" date is set to ensure that only text is read that match this structure:

set_text_model_param (TextModel, 'text_line_structure', '2 2 2')

And finally, the text is segmented and read:

find_text (Bottle, TextModel, TextResultID)

O
C

R
I

194 OCR (character classification)

18.3.5 Reading Engraved Text

Example: %HALCONEXAMPLES%/hdevelop/Applications/OCR/engraved.hdev

The task of this example is to read the engraved text on the metal surface depicted in figure 18.8.

b)a)

Figure 18.8: (a) Original image; (b) read characters.

The segmentation is solved by using advanced blob analysis: The characters cannot simply be extracted by select-
ing dark or light pixels. Instead, a simple segmentation would yield only fractions of the characters together with
noise objects. Preprocessing the image using gray value morphology allows to segment the real characters.

gray_range_rect (Image, ImageResult, 7, 7)

invert_image (ImageResult, ImageInvert)

threshold (ImageResult, Region, 128, 255)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 1000, 99999)

sort_region (SelectedRegions, SortedRegions, 'first_point', 'true', \

'column')

Finally, the actual reading is performed.

read_ocr_class_mlp (FontName, OCRHandle)

for I := 1 to Number by 1

select_obj (SortedRegions, ObjectSelected, I)

do_ocr_single_class_mlp (ObjectSelected, ImageInvert, OCRHandle, 1, \

Class, Confidence)

endfor

18.3.6 Reading Forms

Example: %HALCONEXAMPLES%/hdevelop/Applications/OCR/ocrcolor.hdev

The task of this example is to extract the symbols in the form. A typical problem is that the symbols are not printed
in the correct place, as depicted in figure 18.9.

To solve the problem of numbers printed on lines, color is used here: The hue value of the characters differs from
the hue of the form. The color classification method is a very simple way to save execution time: In contrast to
more difficult color processing problems, here it is sufficient to consider the difference of the red and green channel
combined with the intensity.

18.3 Programming Examples 195

Figure 18.9: Example images for OCR.

threshold (Green, ForegroundRaw, 0, 220)

sub_image (RedReduced, GreenReduced, ImageSub, 2, 128)

mean_image (ImageSub, ImageMean, 3, 3)

binary_threshold (ImageMean, Cluster1, 'smooth_histo', 'dark', \

UsedThreshold)

difference (Foreground, Cluster1, Cluster2)

concat_obj (Cluster1, Cluster2, Cluster)

opening_circle (Cluster, Opening, 2.5)

The selected pixels are grouped and post-processed with morphological operators.

closing_rectangle1 (NumberRegion, NumberCand, 1, 20)

difference (Image, NumberCand, NoNumbers)

connection (NumberRegion, NumberParts)

intensity (NumberParts, Green, MeanIntensity, Deviation)

expand_gray_ref (NumberParts, Green, NoNumbers, Numbers, 20, 'image', \

MeanIntensity, 48)

union1 (Numbers, NumberRegion)

connection (NumberRegion, Numbers)

For reading, it is important not to use the gray values of the background because of the changes in color. To solve
this, only region features are used for the font, i.e., the regions are used to create an artificial image that is printed
dark on light.

paint_region (NoNumbers, Green, ImageOCRRaw, 255, 'fill')
paint_region (NumberRegion, ImageOCRRaw, ImageOCR, 0, 'fill')

The actual character classification is performed in the artificial image.

read_ocr_class_mlp ('Industrial_0-9_NoRej', OCRHandle)

do_ocr_multi_class_mlp (FinalNumbers, ImageOCR, OCRHandle, RecChar, \

Confidence)

O
C

R
I

196 OCR (character classification)

18.3.7 Segment and Select Characters

18.3.7.1 Segment Rotated Characters

Example: %HALCONEXAMPLES%/hdevelop/OCR/Segmentation/select_characters.hdev

This example shows how to easily segment the characters of a rotated dot print using the segmentation operators
that are provided especially for OCR (see figure 18.10).

a) b)

Figure 18.10: (a) Original image; b) selected characters.

First, the image is read from file. As the print is rotated, the orientation of the text line is determined via
text_line_orientation. The obtained angle is used to rotate the image so that the print becomes horizon-
tal.

read_image (Image, 'dot_print_rotated/dot_print_rotated_' + J$'02d')
text_line_orientation (Image, Image, 50, rad(-30), rad(30), \

OrientationAngle)

rotate_image (Image, ImageRotate, -OrientationAngle / rad(180) * 180, \

'constant')

Then, the operators segment_characters and select_characters are applied to first segment the region of
the complete print and then select those parts of the region that are candidates for individual characters. In contrast
to a classical segmentation using blob analysis, here the regions of the individual characters are found although
they still consist of components that are not connected.

segment_characters (ImageRotate, ImageRotate, ImageForeground, \

RegionForeground, 'local_auto_shape', 'false', 'true', \

'medium', 25, 25, 0, 10, UsedThreshold)

select_characters (RegionForeground, RegionCharacters, 'true', \

'ultra_light', 60, 60, 'false', 'false', 'none', 'true', \

'wide', 'true', 0, 'completion')

The extracted regions can now be used for an OCR application like those described above.

18.3.7.2 Segment Characters with the Manual Text Finder

Example: %HALCONEXAMPLES%/hdevelop/Applications/OCR/find_text_dongle.hdev

This example demonstrates how to segment characters printed in dot print on a dongle with the operator find_text
before performing OCR. For more background information, please refer to the section about the segmentation with
the Smart Text Finder in section 18.2.6 on page 187.

First, image and classifier are read.

read_image (Image, 'ocr/dongle_01')
read_ocr_class_mlp ('DotPrint_NoRej', OCRHandle)

18.3 Programming Examples 197

Then a text model (TextModel) is created with the operator create_text_model_reader and the text properties
are specified with the operator set_text_model_param and TextModel.

create_text_model_reader ('manual', [], TextModel)

*

set_text_model_param (TextModel, 'manual_char_width', 24)

set_text_model_param (TextModel, 'manual_char_height', 33)

set_text_model_param (TextModel, 'manual_is_dotprint', 'true')
set_text_model_param (TextModel, 'manual_max_line_num', 2)

set_text_model_param (TextModel, 'manual_return_punctuation', 'false')
set_text_model_param (TextModel, 'manual_return_separators', 'false')
set_text_model_param (TextModel, 'manual_stroke_width', 4)

set_text_model_param (TextModel, 'manual_eliminate_horizontal_lines', \

'true')

The structures of the text lines are defined with the parameter ’manual_text_line_structure’. E.g., ’man-
ual_text_line_structure’ ’6 1 8’ means that the text has three blocks consisting of 6, 1 and 8 character(s).
In order to define more than one structure, an index number can be added to the parameter name like, e.g., ’man-
ual_text_line_structure_2’.

Note that for the second line two structures are defined, because sometimes the ’/’ is classified as separator and
sometimes as character. Furthermore, to increase the robustness of the character recognition, a regular expression
is defined, which will later be used by do_ocr_word_mlp.

set_text_model_param (TextModel, 'manual_text_line_structure_0', '6 1 8')
set_text_model_param (TextModel, 'manual_text_line_structure_1', '8 10')
set_text_model_param (TextModel, 'manual_text_line_structure_2', '19')
TextPattern1 := '(FLEXID[0-9][A-Z][0-9]{3}[A-F0-9]{4})'
TextPattern2 := '([A-Z]{3}[0-9]{5}.?[A-Z][0-9]{4}[A-Z][0-9]{4})'
Expression := TextPattern1 + '|' + TextPattern2

For preprocessing the domain is reduced to the dark area where the text is assumed to be found.

binary_threshold (Image, Region, 'max_separability', 'dark', UsedThreshold)

opening_rectangle1 (Region, RegionOpening, 400, 50)

erosion_rectangle1 (RegionOpening, RegionOpening, 11, 11)

connection (RegionOpening, ConnectedRegions)

select_shape_std (ConnectedRegions, SelectedRegion, 'max_area', 70)

reduce_domain (Image, SelectedRegion, ImageReduced)

The contrast is then improved with scale_image_max and the image is horizontally aligned.

scale_image_max (ImageReduced, ImageScaleMax)

text_line_orientation (SelectedRegion, ImageScaleMax, 35, rad(-30), rad(30), \

OrientationAngle)

rotate_image (ImageScaleMax, ImageRotate, deg(-OrientationAngle), \

'constant')

Figure 18.11: Reading characters on a dongle with the Smart Text Finder.

The text is found and the results are displayed for every segmented region. The OCR uses regular expressions to
read the text more robustly.

O
C

R
I

198 OCR (character classification)

get_text_result returns the number of lines with ’manual_num_lines’. It can also be used to query ’man-

ual_thresholds’ if the parameter ’manual_persistance’ of the operator set_text_model_param was ac-
tivated. get_text_object can be used to return ’manual_all_lines’ or in this case with ’manual_line’,
it queries specific lines. The operator also returns ’manual_compensated_image’ if ’manual_persistance’
was activated.

get_text_result (TextResult, 'manual_num_lines', NumLines)

dev_display (ImageRotate)

for J := 0 to NumLines - 1 by 1

get_text_object (Line, TextResult, ['manual_line',J])
do_ocr_word_mlp (Line, ImageRotate, OCRHandle, Expression, 3, 5, Class, \

Confidence, Word, Score)

The results are then displayed.

smallest_rectangle1 (Line, Row1, Column1, Row2, Column2)

count_obj (Line, NumberOfCharacters)

dev_set_colored (6)

dev_display (Line)

dev_set_color ('white')
for K := 1 to NumberOfCharacters by 1

select_obj (Line, Character, K)

set_tposition (WindowHandle, Row2[0] + 4, Column1[K - 1])

endfor

18.3.8 Syntactic and Lexicon-Based Auto-Correction of OCR Results

Example: %HALCONEXAMPLES%/hdevelop/OCR/Neural-Nets/label_word_process_mlp.hdev

This example reads the "best before" date depicted in figure 18.12. To correct an incorrect OCR result for the upper
text line, a lexicon-based auto-correction is used. Errors can occur, e.g., because of the similarity of characters,
e.g., between the character O and the number 0. For the second text line, regular expressions are used to ensure
that the result has the correct format.

a) b)

Figure 18.12: (a) Original image; (b) text is corrected using syntactic and lexicon-based auto-correction.

First, the pretrained font Industrial is read as preparation for the actual OCR reading. For the upper line of the
text, the three expected words are stored in a lexicon that is created with create_lexicon and will be used later.
Then, the images are read, an ROI for the print is generated and aligned, and the regions for the characters are
extracted and stored in the variable SortedWords using blob analysis.

read_ocr_class_mlp ('Industrial_NoRej', OCRHandle)

create_lexicon ('label', ['BEST', 'BEFORE', 'END'], LexiconHandle)

for i := 1 to 9 by 1

read_image (Image, 'label/label_0' + i + '.png')
... get ROI, align print, and extract regions ...

18.3 Programming Examples 199

Now, the text line is read twice with the operator do_ocr_word_mlp. The first time it is read without syntactic or
lexicon-based auto-correction, and the second time the result is corrected by matching it to the lexicon entries.

sort_region (CharactersWords, SortedWords, 'character', 'true', 'row')
gen_empty_obj (Word)

Text := ''
OriginalText := ''
for j := 1 to |Column| - 1 by 1

select_obj (SortedWords, Character, j)

concat_obj (Word, Character, Word)

if (j == |Column| or (Column[j] - Column[j - 1]) > 30)

do_ocr_word_mlp (Word, ImageOCR, OCRHandle, '.*', 1, 5, Class, \

Confidence, WordText, WordScore)

OriginalText := OriginalText + ' ' + WordText

do_ocr_word_mlp (Word, ImageOCR, OCRHandle, '<label>', 1, 5, Class, \

Confidence, WordText, WordScore)

Text := Text + ' ' + WordText

gen_empty_obj (Word)

endif

endfor

The second text line, i.e., the actual date, is read using a regular expression that ensures the correct format for the
date. This is done to suppress structures that may be extracted as candidates for characters but syntactically do not
fit into the searched string.

sort_region (CharactersDate, SortedDate, 'character', 'true', 'row')
do_ocr_word_mlp (SortedDate, ImageOCR, OCRHandle, '.*', 5, 5, Class, \

Confidence, OriginalDateText, DateScore)

do_ocr_word_mlp (SortedDate, ImageOCR, OCRHandle, \

'^([0-2][0-9]|30|31)/(0[1-9]|10|11|12)/0[0-5]$', 10, 5, \

Class, Confidence, DateText, DateScore)

O
C

R
I

200 OCR (character classification)

18.4 Relation to Other Methods

18.4.1 Alternatives to OCR

Matching (see description on page 89)
As an alternative to classical OCR, matching can be used to read single characters or more complex symbols. In
this case, one model for each character must be generated. The advantage of matching is the invariance to rotation.
Furthermore, it is not necessary to segment the characters prior to the classification. Therefore, the matching
approach should be considered when there is no robust way to separate the characters from the background.

Classification
You can consider the OCR tool as a convenient way of using a classifier. The OCR automatically derives invariant
features and passes them to the underlying classifier. If the features offered by the OCR do not fulfill the needs of
your application, you can create an “extended” OCR classifier by calculating the features using normal HALCON
feature extraction operators and then using them with one of the classifiers that HALCON offers (see the chapters
“Regions . Features” and “Classification” in the Reference Manual).

18.5 Tips & Tricks

18.5.1 Composed Symbols

Some characters and symbols are composed of multiple sub-symbols, like an “i”, “%”, or “!”. For the OCR,
these sub-symbols must be combined into a single region. If you use the operators segment_characters and
select_characters for the segmentation of the characters, sub-symbols are automatically combined. Otherwise,
you can combine them by calling closing_rectangle1 after thresholding, typically using a small width but a
larger height. After calling connection to separate the characters, you use the operator intersection to get the
original segmentation (input parameter 2), while preserving the correct connected components from connection

(input parameter 1).

18.6 Advanced Topics

18.6.1 Line Scan Cameras

In general, line scan cameras are treated like normal area sensors. But in some cases, not single images but an “in-
finite” sequence of images showing objects, e.g., on a conveyor belt, must be processed. In this case, the end of one
image is the beginning of the next one. This means that text or numbers, which partially lie in both images, must be
combined into one object. For this purpose, HALCON provides the operator merge_regions_line_scan. This
operator is called after the segmentation of one image, and combines the current objects with those of previous
images. For more information see the Solution Guide II-A.

18.6.2 Circular Prints

In some cases the symbols are not printed as straight lines but along arcs, e.g., on a CD. To read these, the (virtual)
center and radius of the corresponding circle are extracted. Using the operator polar_trans_image_ext, the
image is then unwrapped. To project a region obtained in the unwrapped image back into the original image, you
can use the operator polar_trans_region_inv.

18.6.3 OCR Features

HALCON offers many different features for the OCR. Most of these are for advanced use only. In most cases it
is recommended to use the feature combination ’default’. This combination is based on the gray values within
the surrounding rectangle of the character. In case that the background of the characters cannot be used, e.g., if it
varies because of texture, the features ’pixel_binary’, ’ratio’, and ’anisometry’ are good combinations.
Here, only the region is used, the underlying gray values are ignored.

18.7 Pretrained OCR Fonts 201

18.7 Pretrained OCR Fonts

The following sections shortly introduce you to the pretrained OCR fonts provided by HALCON. You can access
them in the subdirectory ocr of the directory where you installed HALCON. Note that the pretrained fonts were
trained with symbols that are printed dark on light. If you want to read light on dark symbols with one of the
provided fonts, you can either invert the image with the operator invert_image, or, if this does not lead to a
satisfying result, preprocess the image by applying first the operator gen_image_proto with a light gray value
and then overpaint_region with the gray value set to 0.

Note that the pretrained fonts were trained with the character encoding Windows-1252. Therefore, the appearance
of character symbols with an ASCII code above 127 (these are ’e’, ’£’, ’¥’) may differ from the expected ap-
pearance depending on the character encoding of your system. In such cases, the classified characters should be
checked based on their ASCII code, i.e. 128 for ’e’, 163 for ’£’, and 165 for ’¥’.

The pretrained fonts are based on an MLP classifier, except for the ’Universal’ font, which is based on CNN.

18.7.1 Pretrained Fonts with Regularized Weights and Rejection Class

All pretrained OCR fonts are available in two versions. Font names ending with _NoRej have regularization
weights but no rejection class, font names ending with _Rej have regularization weights as well as a rejection
class. Because of the regularization, the pretrained OCR fonts provide more meaningful confidences. With fonts
that provide a rejection class, it is possible to distinguish characters from background clutter. Fonts with a rejection
class return the ASCII Code 26, which is SUB (substitute) if no letter was found.

18.7.2 Nomenclature for the Ready-to-Use OCR Fonts

There are several groups of OCR fonts available. The members of each group differ as they contain different
symbol sets. The content of an OCR font is described by its name. For the names of the pretrained OCR fonts the
following nomenclature is applied:

The name starts with the group name, e.g., Document or DotPrint, followed by indicators for the set of symbols
contained in the OCR font. The meaning of the indicators is the following:

• 0-9: The OCR font contains the digits 0 to 9.

• A-Z: The OCR font contains the uppercase characters A to Z.

• + : The OCR font contains special characters. The list of special characters varies slightly over the indi-
vidual OCR fonts. It is given below for each OCR font separately.

• _NoRej: The OCR font has no rejection class.

• _Rej: The OCR font has a rejection class.

If the name of the OCR font does not contain any of the above indicators or is only followed by the indicators
_NoRej or _Rej, typically, the OCR font contains the digits 0 to 9, the uppercase characters A to Z, the lower-
case characters a to z, and special characters. Some of the OCR fonts do not contain lowercase characters (e.g.,
DotPrint). This is explicitly mentioned in the description of the respective OCR fonts.

18.7.3 Ready-to-Use OCR Font ’Document’

The OCR font Document can be used to read characters printed in fonts like Arial, Courier, or Times New Roman.
These are typical fonts for printing documents or letters.

Note that the characters I and l of the font Arial cannot be distinguished. That means that an l may be mistaken
for an I and vice versa.

Available special characters: - = + < > . # $ % & () @ * e £ ¥

The following OCR fonts with different symbol sets are available:

O
C

R
I

202 OCR (character classification)

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, a-z, special characters Document_Rej Document_NoRej

A-Z, special characters Document_A-Z+_Rej Document_A-Z+_NoRej

0-9 Document_0-9_Rej Document_0-9_NoRej

0-9, A-Z Document_0-9A-Z_Rej Document_0-9A-Z_NoRej

18.7.4 Ready-to-Use OCR Font ’DotPrint’

The OCR font DotPrint can be used to read characters printed with dot printers (see figure 18.13).

It contains no lowercase characters.

Available special characters: - / . * :

The following OCR fonts with different symbol sets are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, special characters DotPrint_Rej DotPrint_NoRej

A-Z, special characters DotPrint_A-Z+_Rej DotPrint_A-Z+_NoRej

0-9 DotPrint_0-9_Rej DotPrint_0-9_NoRej

0-9, special characters DotPrint_0-9+_Rej DotPrint_0-9+_NoRej

0-9, A-Z DotPrint_0-9A-Z_Rej DotPrint_0-9A-Z_NoRej

Figure 18.13: Examples for dot prints.

18.7.5 Ready-to-Use OCR Font ’HandWritten_0-9’

The OCR font HandWritten_0-9 can be used to read handwritten numbers (see figure 18.14).

It contains the digits 0-9.

Available special characters: none

The following OCR fonts are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9 HandWritten_0-9_Rej HandWritten_0-9_NoRej

Figure 18.14: Examples for handwritten numbers.

18.7 Pretrained OCR Fonts 203

18.7.6 Ready-to-Use OCR Font ’Industrial’

The OCR font Industrial can be used to read characters printed in fonts like Arial, OCR-B, or other sans-serif
fonts (see figure 18.15). These fonts are typically used to print, e.g., labels.

Available special characters: - / + . $ % * e £ ¥

The following OCR fonts with different symbol sets are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, a-z, special characters Industrial_Rej Industrial_NoRej

A-Z, special characters Industrial_A-Z+_Rej Industrial_A-Z+_NoRej

0-9 Industrial_0-9_Rej Industrial_0-9_NoRej

0-9, special characters Industrial_0-9+_Rej Industrial_0-9+_NoRej

0-9, A-Z Industrial_0-9A-Z_Rej Industrial_0-9A-Z_NoRej

Figure 18.15: Examples for industrial prints.

18.7.7 Ready-to-Use OCR Font ’OCR-A’

The OCR font OCR-A can be used to read characters printed in the font OCR-A (see figure 18.16).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ * e £ ¥

The following OCR fonts with different symbol sets are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, a-z, special characters OCRA_Rej OCRA_NoRej

A-Z, special characters OCRA_A-Z+_Rej OCRA_A-Z+_NoRej

0-9 OCRA_0-9_Rej OCRA_0-9_NoRej

0-9, A-Z OCRA_0-9A-Z_Rej OCRA_0-9A-Z_NoRej

Figure 18.16: Selected characters of the OCR-A font.

18.7.8 Ready-to-Use OCR Font ’OCR-B’

The OCR font OCR-B can be used to read characters printed in the font OCR-B (see figure 18.17).

Available special characters: - ? ! / \{} = + < > . # $ % & () @ * e £ ¥

The following OCR fonts with different symbol sets are available:

O
C

R
I

204 OCR (character classification)

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, a-z, special characters OCRB_Rej OCRB_NoRej

A-Z, special characters OCRB_A-Z+_Rej OCRB_A-Z+_NoRej

0-9 OCRB_0-9_Rej OCRB_0-9_NoRej

0-9, A-Z OCRB_0-9A-Z_Rej OCRB_0-9A-Z_NoRej

0-9, A-Z, + and < OCRB_passport_Rej OCRB_passport_NoRej

Figure 18.17: Selected characters of the OCR-B font.

18.7 Pretrained OCR Fonts 205

18.7.9 Ready-to-Use OCR Font ’Pharma’

The OCR font Pharma can be used to read characters printed in fonts like Arial, OCR-B, and other fonts that are
typically used in the pharmaceutical industry (see figure 18.18).

This OCR font contains no lowercase characters.

Available special characters: - / . () :

The following OCR fonts with different symbol sets are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, special characters Pharma_Rej Pharma_NoRej

0-9 Pharma_0-9_Rej Pharma_0-9_NoRej

0-9, special characters Pharma_0-9+_Rej Pharma_0-9+_NoRej

0-9, A-Z Pharma_0-9A-Z_Rej Pharma_0-9A-Z_NoRej

Figure 18.18: Examples for pharmaceutic labels.

O
C

R
I

206 OCR (character classification)

18.7.10 Ready-to-Use OCR Font ’SEMI’

The OCR font SEMI can be used to read characters printed in the SEMI font which consists of characters which
are designed to be easily distinguished from each other. It has a limited set of characters which can be viewed in
figure 18.19.

This OCR font contains no lowercase characters.

Available special characters: - .

The following OCR fonts are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, special characters SEMI_Rej SEMI_NoRej

Figure 18.19: Character set of SEMI font.

Figure 18.20: Examples for SEMI font. Note that these images were inverted before the training was applied! That
is, this font is nevertheless pretrained only for dark on light symbols.

18.7.11 Ready-to-Use OCR Font ’Universal’

The OCR font Universal can be used to read a wide range of different characters (see figure 18.21). The training
of this CNN-based font is based on the characters used for ’Document’, ’DotPrint’, ’SEMI’, and ’Indus-

trial’.

Available special characters: - / = + : < > . # $ % & () @ * e £ ¥

The following OCR fonts are available:

Symbol set Name of OCR font
with rejection class

Name of OCR font
without rejection class

0-9, A-Z, a-z, special characters Universal_Rej Universal_NoRej

A-Z, special characters Universal_A-Z+_Rej Universal_A-Z+_NoRej

0-9 Universal_0-9_Rej Universal_0-9_NoRej

0-9, special characters Universal_0-9+_Rej Universal_0-9+_NoRej

0-9, A-Z Universal_0-9A-Z_Rej Universal_0-9A-Z_NoRej

0-9, A-Z, special characters Universal_0-9A-Z+_Rej Universal_0-9A-Z+_NoRej

18.7 Pretrained OCR Fonts 207

Figure 18.21: Examples for Universal font.

O
C

R
I

208 OCR (character classification)

OCR (Deep OCR) 209

Chapter 19

OCR (Deep OCR)

This chapter describes Optical Character Recognition (OCR) using Deep OCR, a deep-learning-based method
designed for this task. The approach differs from the ones introduced in Chapter OCR on page 183 as not only
single characters are read but connected characters, to which we will refer as words.

19.1 Basic Concept

Deep OCR is a deep-learning-based method with its own operator set allowing a customized interface. Its models
usually consist of two components:

detection_model: Detects words in the image.

recognition_model: Recognizes the word in the detected image part.

This said, the model can detect the words in the image (without the need of determining special regions of interest)
and recognize them. Thereby, the words may even be rotated, see e.g., figure 19.1. The provided model can only
detect words and recognize characters from the set it has learned and only read fonts similar to the ones it has seen
during training. If this model is not sufficient for your specific task, both components of the model can be retrained
with custom data (see section 19.2).
For more information on the general concept of deep learning, see “Deep Learning”.

It is also possible to create a model consisting only of one of the two components mentioned above. In this case,
the model is smaller and faster, but accomplishes only a single task.

19.1.1 Offline Phase

In case the provided Deep OCR model is used as it is, the offline part consists only of the model creation and
writing it in a file.

Write Model

Create Model

19.1.1.1 Create Model

The Deep OCR model needs to be created first. For this the operator create_deep_ocr has to be used.

D
ee

p
O

C
R

210 OCR (Deep OCR)

19.1.1.2 Write Model

Write the model in a file using write_deep_ocr. This allows to read the model in the online phase instead of
creating a new one every time.

19.1.2 Online Phase

The online part consists of reading the images and reading the words on it. In the following its basic steps are
listed.

Extract Results

Apply Model

Acquire Image(s)

Read Model

19.1.2.1 Read Model

As a first step, the Deep OCR model you created prior to this step is read using read_deep_ocr. Depending on
your setting and application you may want to set specific parameters using set_deep_ocr_param

19.1.2.2 Acquire Image(s)

Images must be acquired.

For detailed information see the description of this method on page 21.

Depending on the model and the image, preprocessing might be necessary.

19.1.2.3 Apply Model

Apply the Deep OCR model on the read image using apply_deep_ocr.

19.1.2.4 Extract Results

Extract the results from the returned dictionary. Possible entries are described in the reference manual entry of
apply_deep_ocr.

19.2 Retrain Model (Recognition & Detection Component)

The provided model can be retrained in order to adjust it to a specific task. This is done by providing task-specific
data for training and evaluation of the model. The requirements and workflow are described in the chapter reference
“OCR . Deep OCR”.

For a successful training the training data needs to cover the full spectrum of words and character range that
might occur in the actual application. After training and evaluation the retrained model can be used instead of the
pretrained model in the Deep OCR workflow as described in Basic Concept on page 209.

For each model component an example program using this approach is described in section 19.3.2 (recognition)
and section 19.3.3 on page 212 (detection), respectively.

19.3 Programming Examples 211

19.3 Programming Examples

This section shows examples using Deep OCR in HALCON.

19.3.1 Locate and Recognize Text

Example: %HALCONEXAMPLES%/hdevelop/OCR/Deep-OCR/deep_ocr_workflow.hdev

Figure 19.1: Different images with words to be detected and read.

Figure 19.1 shows images with connected characters, thus words. The task is to detect the words and read them
within one setup, although the input images are differing significantly. Note how the words on the left image are
not all horizontally aligned.

The example program solves the task closely to the shown Basic Concept on page 209. There are two exceptions:
As a first, there is no model to be read, so it has to be created. As a second, results are visualized as shown in
figure 19.2.

Figure 19.2: Left: The image shows three keys with punched numbers of several digits. These numbers were found
and recognized.
Middle: Visualized scores for the detected character centers.
Right: Visualized scores for the connection of detected character centers.

The example continues and demonstrates also how a single component can be applied and how to deal with images
too large for the detection component (see section 19.4).

19.3.2 Retrain Recognition Component

Example:
%HALCONEXAMPLES%/hdevelop/OCR/Deep-OCR/deep_ocr_recognition_training_workflow.hdev

This example shows how retraining the Deep OCR recognition component can improve your results.

The text in the example images contains characters (’{’ and ’}’) and a font that the pretrained Deep OCR model
has not seen during its training. Therefore, a retraining with custom data that contains the font and the characters
that will occur during inference is performed. The result of such training is shown in figure 19.3.

D
ee

p
O

C
R

212 OCR (Deep OCR)

Figure 19.3: The retrained model learned to identify the font and characters (bottom) it could not handle correctly
before (top).

19.3.3 Retrain Detection Component

Example:
%HALCONEXAMPLES%/hdevelop/OCR/Deep-OCR/deep_ocr_detection_training_workflow.hdev

This example shows how retraining the Deep OCR detection component can improve your results.

The numbers in the example images contain contrast and reflections that the pretrained Deep OCR model has not
seen during its training. Therefore, a retraining with custom data that contains the contrast and reflections that will
occur during inference is performed. The result of such training is shown in figure 19.4.

Figure 19.4: The retrained model improved the localization of numbers (right) compared to the pretrained model
(left).

19.4 Large images

If the input Image is very large, zooming it to the model input dimensions can lead to degraded detection perfor-
mance. This is because the text in the model input will become very small. In these cases an automatic tiling helps.
Thus, setting ’detection_tiling’ using set_deep_ocr_param internally the input image is tiled, meaning split into
smaller, overlapping parts. These parts are processed separately and the results pieced together. An illustration of
such a tiling is shown in figure 19.5. As these tiles are much smaller than the original image, the text in them stays
readable for the model.

19.5 Relation to Other Methods 213

This is also shown in the example: %HALCONEXAMPLES%/hdevelop/OCR/Deep-

OCR/deep_ocr_workflow.hdev

Figure 19.5: Example of a tiled input image.

19.5 Relation to Other Methods

The approach differs from the ones introduced in Chapter OCR on page 183 in various ways. As a first, the model
does not try to recognize only single characters but connected characters, thus words. There is not a specific, single
font for a Deep OCR model. The model has been trained with a variety of font types and which it can recognize.
Further the model is able to detect words of different size and orientation.
But the drawback is that the model can not be enhanced by training an additional character or font type yet. If a
specific character has not been learned often enough during training, the model will most probably fail to recognize
it. Words written in a font the model has not learned will most probably not be read correctly, some times not even
detected.

D
ee

p
O

C
R

214 OCR (Deep OCR)

Stereo Vision 215

Chapter 20

Stereo Vision

The basic principle of stereo vision is that 3D coordinates of object points are determined from two or more images
that are acquired simultaneously from different points of view. HALCON provides two stereo methods: binocular
stereo and multi-view stereo.

Binocular stereo uses exactly two cameras and returns disparity images, distance images, or 3D coordinates.
Figure 20.1, e.g., shows a stereo image pair of a board and the resulting height map of the board’s components.

Figure 20.1: Basic principle of binocular stereo. Top: stereo image pair; Bottom: height map.

Multi-view stereo can also use more than two cameras. It can be used to either reconstruct surfaces that are
returned as 3D object models or to reconstruct individual points. Figure 20.2, e.g., shows the images of a multi-
view stereo camera system that is used to reconstruct the surface of pipe joints and the resulting 3D object model.

The advantage of stereo vision is that 3D information of the surface of arbitrarily shaped objects can be determined
from images. Stereo vision can also be combined with other vision methods, e.g., as a preprocessing step for blob
analysis, which can be used to extract specific objects or object parts from the depth image, or surface-based 3D
matching, which locates objects that are provided as 3D models in the reconstructed surface.

For detailed information about stereo vision, please refer to the Solution Guide III-C, chapter 5 on page 117.

20.1 Basic Concept

The derivation of 3D information with a stereo camera system consists of four main steps:

S
te

re
o

V
is

io
n

216 Stereo Vision

Figure 20.2: Left: images of a multi-view stereo camera system; right: reconstructed surface of pipe joints.

Reconstruct 3D
Information

Rectify Image(s)

Acquire Stereo Image(s)

Calibrate Stereo Camera
System

Acquire Calibration
Image(s)

20.1.1 Acquire Calibration Image(s)

A number of stereo calibration images is acquired. Each image shows the HALCON calibration plate in a different
position and orientation.

20.1.2 Calibrate Stereo Camera System

Using the previously acquired calibration images, the stereo camera system is calibrated. For this, the image
coordinates of the calibration marks must be extracted from the calibration images. Then, the parameters of the
stereo setup are determined.

For binocular stereo, the parameters are then used to create the rectification maps for the rectification of the stereo
images.

For multi-view stereo, a so-called stereo model is created, which contains the camera parameters and further
information.

The calibration process is described in detail in the Solution Guide III-C in section 5.2 on page 122.

20.1.3 Acquire Stereo Image(s)

Stereo images are simultaneously acquired with the calibrated stereo camera system. They show the object for
which the 3D information should be reconstructed.

20.2 Extended Concept 217

20.1.4 Rectify Image(s)

For binocular stereo, the stereo images must be rectified such that corresponding points (conjugate points) lie on
the same row in both rectified images. For this, the rectification map that has been determined above must be used.

20.1.5 Reconstruct 3D Information

Now, 3D information can be reconstructed.

With binocular stereo, for each point of the first rectified image the conjugate point in the second rectified image
is determined (stereo matching). For these points, either the disparity or the distance to the stereo camera system
can be calculated and returned as a gray value image. The reference plane to which these distances are related can
be changed (see the Solution Guide III-C, section 5.3.5.4 on page 134). It is also possible to derive the distance
or the 3D coordinates for selected points for which the disparity is known. What is more, 3D coordinates can be
determined from the image coordinates of each pair of conjugate points directly. See the Solution Guide III-C,
section 5.3.5 on page 130, for details.

With multi-view stereo, you can reconstruct complete surfaces or 3D coordinates for selected points. When
reconstructing surfaces, you first set parameters for the reconstruction with set_stereo_model_param, then you
apply set_stereo_model_image_pairs to define which cameras build pairs, and finally you reconstruct the
surface with reconstruct_surface_stereo. When reconstructing selected points of an object, you first extract
the corresponding points from the stereo images, then you accumulate the correspondence information for all
cameras that image the object, and finally you reconstruct the points with reconstruct_points_stereo. See
the Solution Guide III-C, section 5.4.2 on page 141, for details.

20.2 Extended Concept

In many cases, the derivation of 3D information with a binocular stereo system involves more steps than described
above. Reasons for this are, e.g., the need to restrict the stereo reconstruction to an ROI. Furthermore, postpro-
cessing like the transformation of the 3D coordinates into another coordinate system or the visualization of results
is often required.

20.2.1 Use Region Of Interest

A region of interest can be created to reduce the image domain for which the stereo matching will be performed.
This will reduce the processing time.

For detailed information see the description of this method on page 25.

20.2.2 Transform Results Into World Coordinates

In some applications, the 3D coordinates must be transformed into a given world coordinate system.

For binocular stereo, this step is performed after the reconstruction: Beforehand, the relation between the given
world coordinate system and the stereo camera system must be determined. Then, the 3D coordinates can be
transformed as requested. How to transform results into world coordinates is described in detail in the Solution
Guide III-C in section 3.3 on page 76.

For multi-view stereo, the world coordinate system can be specified already when creating the stereo model (see
the Solution Guide III-C, section 5.4.1.2 on page 140 for details).

20.2.3 Visualize Results

Finally, you might want to visualize the disparity or distance images or the reconstructed surface (3D object model).
We recommend to have a look at the provided examples.

S
te

re
o

V
is

io
n

218 Stereo Vision

Visualize Results

Transform Results Into
World Coordinates

Reconstruct 3D
Information

Use Region Of Interest

Rectify Image(s)

Acquire Stereo Image(s)

Calibrate Stereo Camera
System

Acquire Calibration
Image(s)

20.3 Programming Examples

This section gives a brief introduction to using HALCON for stereo vision.

20.3.1 Segment the Components of a Board With Binocular Stereo

Example: %HALCONEXAMPLES%/hdevelop/Applications/Object-Recognition-

2D/board_components.hdev

Figure 20.3 shows a stereo image pair of a board together with the result of a segmentation of raised objects. The
segmentation has been carried out based on the distance image that was derived with binocular stereo.

First, a calibration data model is created and initialized:

create_calib_data ('calibration_object', 2, 1, CalibDataID)

set_calib_data_cam_param (CalibDataID, 'all', [], StartCamPar)

set_calib_data_calib_object (CalibDataID, 0, CalDescrFile)

Then, a number of calibration images must be acquired. Here, a calibration plate with rectangularly arranged
marks is used. A subset of these calibration images is shown in figure 20.4. For details regarding the calibration
process, including how to take a suitable set of calibration images, refer to the chapter reference “Calibration”.

In the individual calibration images, find_calib_object locates the calibration plate, extracts the image coordi-
nates of the calibration marks, and stores them in the calibration data model.

for I := 1 to Number by 1

find_calib_object (ImageL, CalibDataID, 0, 0, I, [], [])

find_calib_object (ImageR, CalibDataID, 1, 0, I, [], [])

endfor

20.3 Programming Examples 219

Figure 20.3: Segment board components based on their height.

Figure 20.4: A subset of the calibration images that are used for the calibration of the stereo camera system.

With this, the actual calibration of the stereo camera system is performed and the results are accessed.

calibrate_cameras (CalibDataID, Error)

get_calib_data (CalibDataID, 'camera', 0, 'params', CamParamL)

get_calib_data (CalibDataID, 'camera', 1, 'params', CamParamR)

get_calib_data (CalibDataID, 'camera', 1, 'pose', cLPcR)

Now, the rectification maps for the rectification of the stereo image pair can be generated.

gen_binocular_rectification_map (MapL, MapR, CamParamL, CamParamR, cLPcR, 1, \

'viewing_direction', 'bilinear', \

RectCamParL, RectCamParR, CamPoseRectL, \

CamPoseRectR, RectLPosRectR)

Then, each stereo image pair acquired with the calibrated stereo camera system can be rectified. This has the
effect that conjugate points have the same row coordinate in both images. The rectified images are displayed in
figure 20.5

map_image (ImageL, MapL, ImageRectifiedL)

map_image (ImageR, MapR, ImageRectifiedR)

From the rectified images, a distance image can be derived in which the gray values represent the distance of the
respective object point to the stereo camera system. This step is the core of the stereo approach. Here, the stereo
matching, i.e., the determination of the conjugate points takes place.

S
te

re
o

V
is

io
n

220 Stereo Vision

Figure 20.5: Rectified images.

binocular_distance (ImageRectifiedL, ImageRectifiedR, DistanceImage, \

ScoreImageDistance, RectCamParL, RectCamParR, \

RectLPosRectR, 'ncc', MaskWidth, MaskHeight, \

TextureThresh, MinDisparity, MaxDisparity, NumLevels, \

ScoreThresh, 'left_right_check', 'interpolation')

Finally, the distance image can, e.g., be corrected such that a given object plane receives a specified distance value,
e.g., zero. Objects that deviate from the given object plane can thus be segmented very easily with a threshold
operation.

threshold (HeightAboveReferencePlaneReduced, Range1, Height1_Min, \

Height1_Max)

threshold (HeightAboveReferencePlaneReduced, Range2, Height2_Min, \

Height2_Max)

threshold (HeightAboveReferencePlaneReduced, Range3, Height3_Min, \

Height3_Max)

20.3.2 Reconstruct the Surface of Pipe Joints With Multi-View Stereo

Example: %HALCONEXAMPLES%/hdevelop/Applications/Robot-Vision/locate_pipe_joints_stereo.hdev

Figure 20.2 shows images from a 4-camera system. Using multi-view stereo, the surface of the pipe joints is
reconstructed.

Here, the calibration is performed in an offline step, the known camera parameters are used.

init_camera_setup (CameraSetupModelID)

Using the camera setup model, a stereo model for surface reconstruction is created.

create_stereo_model (CameraSetupModelID, 'surface_pairwise', [], [], \

StereoModelID)

Now, the image pairs are specified. First, some parameters for the rectification maps are set. Then, it is specified
between which cameras the disparity is computed.

set_stereo_model_param (StereoModelID, 'rectif_interpolation', 'bilinear')
set_stereo_model_param (StereoModelID, 'rectif_sub_sampling', 1.2)

set_stereo_model_image_pairs (StereoModelID, [0, 2], [1, 3])

Furthermore, the stereo model is configured by setting several parameters. First, the bounding box is set
that restricts the reconstruction to a specific part of the 3D space. Additionally, the internal call of binocu-
lar_disparity is adjusted.

20.4 Relation to Other Methods 221

set_stereo_model_param (StereoModelID, 'bounding_box', [-0.2, -0.07, -0.075, \

0.2, 0.07, -0.004])

set_stereo_model_param (StereoModelID, 'sub_sampling_step', 3)

set_stereo_model_param (StereoModelID, 'binocular_filter', \

'left_right_check')

Finally, the reconstruction operator is called. It returns the reconstructed surface in form of a 3D object model.

reconstruct_surface_stereo (Images, StereoModelID, PipeJointPileOM3DID)

In section 11.3.2 on page 108, the reconstructed surface is then used as input for surface-based 3D matching, which
recognizes and locates individual pipe joints.

20.4 Relation to Other Methods

20.4.1 Methods that are Using Stereo Vision

Blob Analysis (see description on page 33)
The results of binocular stereo can be used as input for blob analysis. This may be useful if locally high structures
must be extracted that cannot be reliably detected from the original image. By applying blob analysis to the
distance image, such structures may be extracted very easily.

3D Matching (Surface-Based) (see description on page 101)
The 3D object model that is returned by a surface reconstruction with multi-view stereo can be used as input for
surface-based 3D matching.

3D Primitives Fitting (see Solution Guide III-C, section 4.5 on page 111)
The 3D object model that is returned by a surface reconstruction with multi-view stereo can be used as input for
3D primitives fitting if the contained surface is meshed. To get a meshed surface, the parameter ’point_meshing’
must have been set for the stereo model with set_stereo_model_param before reconstructing the surface.

20.5 Tips & Tricks

20.5.1 Speed Up

Many online applications require maximum speed. Although the stereo matching is a very complex task, you
can speed up this process by using regions of interest, which are the standard method to increase the speed by
processing only those areas where objects must be inspected. This can be done by using pre-defined regions but
also by an online generation of the region of interest that depends on other objects found in the image.

Additionally, for the surface extraction with multi-view stereo, a significant speed up can be obtained when select-
ing the bounding box that restricts the reconstruction to a part of the 3D space as small as possible. The bounding
box must be set with set_stereo_model_param before applying the reconstruction.

20.6 Advanced Topics

20.6.1 High Accuracy

Sometimes very high accuracy is required. To achieve a high distance resolution, i.e., a high accuracy with which
the distance of the object surface from the stereo camera system can be determined, special care should be taken
of the configuration of the stereo camera setup. The setup should be chosen such that the distance between the
cameras as well as the focal length are large and the stereo camera system is placed as close as possible to the
object. For more information, please refer to the Solution Guide III-C, section 5.1.2 on page 120.

S
te

re
o

V
is

io
n

222 Stereo Vision

Visualization 223

Chapter 21

Visualization

Displaying data in HALCON is quite easy: In the graphics windows provided by HALCON, all supported data
types can be visualized directly using specific display operators. Both the creation of these windows and the
displaying requires only little programming effort because the functionality is optimized for the use in machine
vision.

Making use of the HALCON visualization provides several advantages. First of all, it saves a lot of time during the
development because all important visualization methods are already predefined. Furthermore, the functionality
is independent of the operating system: Writing a program under Windows using the visualization of HALCON
can be ported easily to Linux because the visualization operators behave identically and therefore only user code
making use of operating system functions needs to be rewritten.

21.1 Basic Concept

For visualization there are two important aspects to consider: The graphics windows and the data that must be
visualized.

Displaying

Handling Graphics
Windows

21.1.1 Handling Graphics Windows

HALCON provides an easy-to-use operator to create a graphics window for visualization: open_window. This
operator takes all necessary parameters to specify the dimensions, the mode, and the relation to a potential parent
window. As a result, a WindowHandle is returned with which you refer to the window when displaying into it
or when visualization parameters are changed. Note that the dimension of the window is not limited by the size
of the virtual display. Thus, you can work also on systems with multiple screens. The most important operators
for controlling a window are clear_window to reset it to its background color, set_part to specify the display
coordinate system and close_window when the window is no longer needed. The operator set_window_param
allows to set different parameters of an open window.

21.1.2 Displaying

For each HALCON data type, specific operators for displaying are provided. The most convenient operator for
iconic data (images, regions, and XLD) is disp_obj. This operator automatically handles gray or color images,

V
is

ua
liz

at
io

n

224 Visualization

regions, and XLDs. To control the way how data is presented in the window, operators with the prefix set_ (or
dev_set_ for the visualization in HDevelop) are used. They allow to control the color, the draw mode, the line
width, and many other parameters.

21.1.3 A First Example

An example for this basic concept is the following program, which shows how to visualize an image overlaid with
a segmentation result. Here, the visualization operators provided in HDevelop are used.

Figure 21.1: Visualizing the segmented clips.

After reading the image from file the dark clips are selected with binary_threshold, which automatically selects
the threshold value. After determining the connected components and selecting regions with the appropriate size,
the result is visualized. First, the image is displayed. After this, the parameters for regions are set to multi-colors
(12) and margin mode. Finally, the regions are displayed with these settings.

read_image (Image, 'clip')
binary_threshold (Image, Dark, 'max_separability', 'dark', UsedThreshold)

connection (Dark, Single)

select_shape (Single, Selected, 'area', 'and', 5000, 10000)

dev_display (Image)

dev_set_colored (12)

dev_set_draw ('margin')
dev_display (Selected)

21.2 Extended Concept

In advanced applications it is required to gain complete control over the visualization process. This can include
using graphics windows in programs developed with Microsoft Visual Basic or Microsoft C++, changing the
behavior of the graphics windows, making use of buffered output, or even using external programs for the visual-
ization. HALCON provides full control over all these topics to provide advanced flexibility, in addition to the ease
of use.

21.2.1 Handling Graphics Windows

In this section we consider the concept of graphics windows in more detail.

21.2 Extended Concept 225

Mouse Interaction

Displaying

Handling Graphics
Windows

• The graphics windows are designed such that each one stores all the corresponding parameters in a kind of
graphics context. Whenever an operator like set_draw is called, this context is modified to be used for this
window until the value is overwritten. All operators that modify the graphics context start with the prefix
set_. The current value of the context can be requested using the corresponding operator with the prefix
get_, e.g., get_draw.

• Besides display parameters, each graphics window has a coordinate system that can be defined with
set_part. The upper left corner of an image is (0,0), the lower right corner is (height-1,width-1). The
size of an image can be requested using get_image_size. Please note that unlike in HDevelop this coor-
dinate system must be specified by calling set_part. Otherwise, the part of the image that is visualized is
undefined.

• The operator open_window has a parameter called FatherWindow. By default, the value 0 is used, which
means that the window has no parent and floats as an independent instance. You can construct hierarchies of
windows by passing the handle of one window as parent to the other. Besides this, it is also possible to use
the parent mechanism to embed the graphics windows into other forms (see section 21.5 on page 230). To
set different parameters of an open window, use set_window_param.

21.2.2 Displaying

After having opened a graphics window, the returned window handle is used to communicate with it. Typically,
first the visualization parameters are specified before data is displayed. To control images only few operators are
needed: set_paint (for profiles and 3D plots), set_lut (for look-up-tables), and set_part_style (for the
quality of the zooming interpolation). To specify the output for regions, many parameters are available. The most
important ones are set_draw (for filled or margin mode), set_color (for the pen color), set_line_width (for
the pen width), and set_colored (for multi-color modes). To display XLD data, the same parameters (except
set_draw) are used.

With the display mode ’3d_plot’ you can create an interactive display of a height field in 3D. The operator up-
date_window_pose allows to manipulate the pose of such a 3D plot in an intuitive way and the operator unpro-
ject_coordinates calculates the image coordinates for a point in a 3D plot window. The example %HALCONEX-
AMPLES%/hdevelop/Graphics/Parameters/set_paint_3d_plot.hdev shows how to use these operators.
Note that when working with HDevelop, you can also switch directly to the interactive display of the height field
in the 3d_plot mode using the button that is described in the HDevelopUser’s Guide (see section 6.8.4 on page 80).

The visualization itself is performed with operators like disp_image, disp_color, disp_region, or disp_xld.
The most convenient way is to use disp_obj, which automatically uses the correct method.

For text output, you first specify the font with set_font. The desired position in the graphics window is deter-
mined with set_tposition. Writing text into the window is performed with write_string

For a flicker-free display see section 21.5 on page 230.

21.2.3 Mouse Interaction

The most important thing to know is that HALCON does not use an event-driven approach for mouse handling.
Each operator is designed such that the mouse interaction starts when the operator is called and finishes when
the operator returns. If an event-driven mode is needed one has to use the standard mechanisms provided by the
operating system.

V
is

ua
liz

at
io

n

226 Visualization

Interacting with the mouse mainly involves two tasks:

• The first task is to request the position of the mouse. This can be achieved using get_mposition if a pixel-
precise result is sufficient, or using get_mposition_sub_pix for a subpixel-precise output. These operators
return immediately and have the position and the mouse button as result. An alternative are get_mbutton

and get_mbutton_sub_pix for subpixel-precise positions. These operators only return when a mouse
button has been clicked.

• The second important action is drawing shapes with the mouse. This is done with special operators whose
names start with draw_. Operators for many different shapes (like circles or rectangles) are provided. Fur-
thermore, different data types like regions or XLD contours can be used for the result.

21.3 Programming Examples

This section gives a brief introduction to using the visualization operators provided by HALCON.

21.3.1 Displaying HALCON data structures

Example: %HALCONEXAMPLES%/solution_guide/basics/display_operators.hdev

The example program is designed to show the major features of displaying images, regions, XLD, and text. It
consists of a small main program that calls procedures handling the four different data types. The program is
written for HDevelop and uses its specific display operators. This is done in a way that naturally ports (e.g., with
the automatic export) to other language interfaces like C++, C#, or Visual Basic.

The main procedure contains five procedures: open_graphics_window, display_image, display_regions,
display_xld, and display_text. To switch between the programs of the individual procedures you can use the
combo box Procedures in the program window. Following, selected parts of each procedure are explained.

read_image (Image, 'fabrik')
open_graphics_window (Image, WindowHandle)

display_image (Image, WindowHandle)

regiongrowing (Image, Regions, 1, 1, 3, 100)

display_regions (Image, Regions, WindowHandle)

edges_sub_pix (Image, Edges, 'lanser2', 0.5, 10, 30)

display_xld (Image, Edges, WindowHandle)

display_text (Image, Regions, WindowHandle)

open_graphics_window is a support procedure to open a graphics window that has the same size as the image.
This is done by calling get_image_size to access the image dimensions. Before opening the new window, the
existing window is closed. To adapt the coordinate system accordingly, dev_set_part is called. This would be
done automatically in HDevelop, but for the other programming environments this step is necessary. Finally, the
default behavior of HDevelop of displaying each result automatically is switched off. This has the effect that only
programmed output will be visible.

get_image_size (Image, Width, Height)

dev_close_window ()

dev_open_window (0, 0, Width, Height, 'white', WindowHandle)

dev_set_part (0, 0, Height - 1, Width - 1)

dev_update_window ('off')

Then, the display procedure for images is called: display_image. It has the Image and the WindowHandle as
input parameters. First, the window is activated, which again is not needed for HDevelop, but is important for
other programming environments. Now, the image is displayed in the graphics window.

dev_set_window (WindowHandle)

dev_display (Image)

To change the look-up-table (LUT), dev_set_lut is called and the effect will become visible after calling
dev_display once again.

21.3 Programming Examples 227

dev_set_lut ('temperature')
dev_display (Image)

Next, a part of the image is displayed using a so-called 3D plot (see figure 21.2). Here, the gray values are treated
as height information. For this mode another LUT is used.

gen_rectangle1 (Rectangle, 358, 298, 387, 329)

dev_set_draw ('margin')
dev_set_color ('yellow')
dev_display (Rectangle)

dev_set_part (358, 298, 387, 329)

dev_set_lut ('twenty_four')
dev_set_paint ('3d_plot')
dev_display (Image)

a) b)

Figure 21.2: (a) Original image with ROI; (b) 3D plot of image within the ROI.

The procedure to display regions is called display_regions. It first displays the image as background and then
sets the display parameters for the regions. dev_set_draw specifies that only the region border is visualized.
dev_set_colored activates the multi-color mode, where each region is displayed with different colors (which
change cyclically). As an alternative to simply showing the original shape of the regions, HALCON enables you
to modify the shape using dev_set_shape. In the given example the equivalent ellipses are chosen. The result is
depicted in figure 21.3.

dev_display (Image)

dev_set_draw ('margin')
dev_set_colored (6)

dev_display (Regions)

dev_display (Image)

dev_set_shape ('ellipse')
dev_display (Regions)

The procedure display_xld first shows all contours overlaid on the image using the multi-color mode. Then, a
zoom is defined using dev_set_part. This zoom mode allows to inspect the subpixel accurate contours easily.
To give additional information, contours with a given size are selected and for each of these the control points are
extracted using get_contour_xld. The coordinates are here returned as tuples of real values. For each of these
control points, a cross is generated using gen_cross_contour_xld, which is then overlaid onto the contour.

V
is

ua
liz

at
io

n

228 Visualization

a) b)

Figure 21.3: (a) Regions and (b) their equivalent ellipses.

dev_display (Contours)

gen_rectangle1 (Rectangle, 239, 197, 239 + 17, 197 + 17)

dev_set_part (239, 197, 239 + 17, 197 + 17)

select_shape_xld (Contours, SelectedXLD, 'area', 'and', 2000, 3000)

count_obj (SelectedXLD, Number)

for k := 1 to Number by 1

select_obj (SelectedXLD, SingleContour, k)

get_contour_xld (SingleContour, Row, Col)

for i := 0 to |Row| - 1 by 1

gen_cross_contour_xld (Cross, Row[i], Col[i], 0.8, rad(45))

dev_display (Cross)

endfor

endfor

a) b)

Figure 21.4: Subpixel accurate contour control points: (a) original image; (b) zoomed image part.

The last part of the program is a procedure called display_text. It shows how to handle the mouse and text
output. The task is to click with the mouse into the graphics window to select a specific region and to calculate
features, which are then displayed in the graphics window. First, the font is selected. This is the only part of
the visualization that is not portable between Linux and Windows because of the incompatible font name han-
dling. Therefore, the convenience procedure set_display_font is called to hide the internals and unify the font
selection. This procedure is part of the standard procedure path of HDevelop, and can be called from any program.

set_display_font (WindowHandle, 16, 'mono', 'true', 'false')

The rest of the program consists of a while-loop, which terminates as soon as the right mouse button is pressed.
The mouse operator get_mbutton waits until the user clicks with the mouse into the graphics window and then

21.4 Tips & Tricks 229

returns the coordinate and the button value. This coordinate is used to select the region that contains this point using
select_region_point. For this region, the size and the center of gravity are calculated with area_center.
First, the text cursor is positioned with set_tposition and the values are displayed using write_string. Here,
it can be seen how conveniently strings can be composed using the "+" operator.

Button := 0

while (Button != 4)

get_mbutton (WindowHandle, Row, Column, Button)

select_region_point (Regions, DestRegions, Row, Column)

area_center (DestRegions, Area, RowCenter, ColumnCenter)

if (|Area| > 0)

set_tposition (WindowHandle, Row, Column)

dev_set_color ('yellow')
write_string (WindowHandle, '(' + RowCenter + ', \

' + ColumnCenter + ') = ' + Area)

endif

endwhile

Figure 21.5: Center of gravity and area of selected region.

21.4 Tips & Tricks

21.4.1 Saving Window Content

HALCON provides an easy way to save the content of a graphics window to a file. This can, e.g., be useful for
documentation purposes. The corresponding operator is called dump_window. It takes the window handle and the
file name as input. The parameter Device allows to select amongst different file formats.

21.4.2 Execution Time

Generally, visualization takes time. To reduce time, it is recommended to visualize only when it is really needed
for the specific task. When using HDevEngine (see the Programmer’s Guide in part VI on page 139), by default
the execution of all dev_* operators is suppressed. Thus, you can use as much display operators as you need while
developing with HDevelop but save time when executing the final application from a programming language.

Further influences on the run time concern the graphics card and the bit depth. Choosing a bit depth of 16 instead of
32 in many cases speeds up the program execution significantly. So, if speed is important for you, we recommend to
simply try different bit depths, perform typical display operators like disp_image, disp_color, disp_region,
or disp_xld, and measure the execution time with count_seconds. Additionally, although it has generally only
a small influence on the run time, cases exist where you can speed up the visualization also by choosing a lower
screen resolution.

V
is

ua
liz

at
io

n

230 Visualization

21.5 Advanced Topics

21.5.1 Programming Environments

The handling of graphics windows differs in the different programming environments. Especially HDevelop has a
specific way of working with the visualization.

• Because HDevelop is an interactive environment, the handling of windows must be as easy as possible.
In particular, it is important to display data without any need of programming. Therefore, the concept of
window handles is used only if needed. Normally, the window where the output has to go to is not specified
explicitly. Instead, HDevelop makes use of the activation status of the graphics windows. As a consequence,
the display operators of HDevelop do not have a parameter for a window handle. Visualization operators
in HDevelop look identical to their counterparts of HALCON except that their name starts with dev_ and
that the parameter for the window handle is suppressed. When exporting the code, this missing handle will
automatically be inserted.

The second difference is that the windows in HDevelop have a history to automatically redisplay the data
when the window has been resized. This is not the case with standard HALCON graphics windows.

The last difference is that HDevelop automatically sets the coordinate system according to the current image,
whereas you must do this explicitly with programmed code when using HALCON. To make an export to,
e.g., C++, C#, or Visual Basic transparent, we recommend to use dev_set_window when working with
multiple graphics windows and to call dev_set_part to specify the coordinate system.

• When using HALCON windows in MFC, the usual way is to use the windows as a subwindow of
a parent form. This can easily be achieved by using the window handle of the current form as the
father. The handle must be converted to a long value that can then be passed to open_window.
Note that set_check is needed to change to exception handling of HALCON in this context.

set_window_attr("border_width",0);

set_check("~father");

long lWWindowID = (long)m_hWnd;

open_window(0,0,640,480,lWWindowID,"visible","",&m_lWindowID);

set_check("father");

• Opening a HALCON window in Visual Basic is similar to the approach used
for MFC. Here, you use the memberhWnd of the form or of another subwin-
dow like a picture box. As an alternative, the HWindowXCtrl can be used.

Call sys.SetCheck("~father")

Call op.OpenWindow(8, 8, 320, 240, form.hWnd, "", "", WindowHandle)

Call sys.SetCheck("father")

21.5.2 Flicker-Free Visualization

For a flicker-free visualization, a sequential call of display operators is not suitable, because after each call the new
data will immediately be flushed on the visible screen, which may cause flickering results.

When using set_window_param with ’flush’ set to ’false’, the window is no longer updated after each
display of an object. Instead, you have to call flush_buffer explicitly to update the contents of the graphics win-
dow. An example using this approach is provided under %HALCONEXAMPLES%/hdevelop/Inspection/Bead-
Inspection/apply_bead_inspection_model.hdev.

21.5.3 Visualization Quality for Regions when Zooming

For performance reasons, the visualization of regions when zooming in or out of the graphics window is not very
exact. If you need a better visualization and the speed of the visualization is not critical for your application, you
can set the parameter ’region_quality’ of the operator set_window_param to ’good’ and select a weighted
interpolation for the zooming using the operator set_part_style.

21.5 Advanced Topics 231

21.5.4 Remote Visualization

In some applications, the computer used for processing differs from the computer used for visualization. Such
applications can easily be created with HALCON using the socket communication. Operators like send_image

or receive_tuple allow a transparent transfer of the relevant data to the control computer to apply visualization
there.

21.5.5 Programmed Visualization

Sometimes it might be necessary not to apply the standard HALCON visualization operators, but to use a self-
programmed version. This can be achieved by using the access functions provided for all data types. Examples
for these are get_image_pointer1, get_region_runs, or get_contour_xld. Operators like these allow full
access to all internal data types. Furthermore, they provide the data in various forms (e.g., runlength encoding,
points, or contours) to make further processing easier. Based on this data, a self programmed visualization can be
developed easily.

As an alternative, with set_window_type the window type ’pixmap’ can be chosen. In this case, all displayed
data is painted into an internal buffer that can be accessed with get_window_pointer3. The returned pointers
reference the three color channels of the buffer. This buffer can then easily be transferred (e.g., to another system)
and/or transformed into the desired format. One example for a conversion is to call gen_image3 to create a
HALCON color image.

V
is

ua
liz

at
io

n

232 Visualization

Compute Devices 233

Chapter 22

Compute Devices

By using compute devices, calculations from the CPU can be transferred to a compute device which leads to
a significant speedup of some operators. Using compute devices in HALCON is quite easy. They can simply
be activated and deactivated. The use of compute devices is based on OpenCL, which means that all OpenCL
compatible graphics cards (e.g., NVIDIA, AMD and Intel cards) are supported. To find out whether operators
support compute devices, please refer to the ’Execution Information’ paragraph in the operator reference. A list of
operators supporting compute devices can also be found at the end of this chapter (see page 245).

Compute devices are especially useful for filter and transformation operations, as well as for color processing, but
they are also available for more complex operators like subpixel precise edge extraction. The usage of compute
devices is very transparent. As soon as a compute device has been opened and activated, the operators take over
and guide the memory transfer and the synchronization.

However, not all applications will benefit from the use of compute devices. This chapter provides an introduction
into using compute devices and will also assist you with the decision whether compute devices may be an option
to speed up your application or not.

22.1 Basic Concept

Using compute devices for an application basically comprises four obligatory steps.

Deactivate Compute
Device

Perform Calculations on
Compute Device

Activate Compute Device

Initialize Compute Device

Open Compute Device

Query Available Compute
Devices

C
om

pu
te

D
ev

ic
es

234 Compute Devices

22.1.1 Query Available Compute Devices

The operator query_available_compute_devices returns a list of available compute devices.

22.1.2 Open Compute Device

The operator open_compute_device opens a compute device for the current thread.

22.1.3 Initialize Compute Device

The operator init_compute_device initializes the compute device and prepares selected operators. If
init_compute_device is not called, the initialization is performed on demand.

22.1.4 Activate Compute Device

The operator activate_compute_device enables calculations on the compute device for the current thread.

22.1.5 Perform Calculations on Compute Device

In this step calculations can be performed on a compute device.

22.1.6 Deactivate Compute Device

The operator deactivate_compute_device disables the calculations on a compute device for the current thread.

22.1.7 A First Example

The following program lines show those basic steps in the context of a simple program, demonstrating how to use
compute devices with HALCON.

First, available compute devices have to be queried.

query_available_compute_devices (DeviceIdentifier)

After that, a compute device is opened. It is referenced by DeviceIdentifier and returns the handle Device-

Handle.

open_compute_device (DeviceIdentifier, DeviceHandle)

Then an image is read.

read_image (Image, 'rings_and_nuts')

Now, the operator that is supposed to run on the compute device, in this case derivate_gauss, is initialized.

init_compute_device(DeviceHandle, 'derivate_gauss')

The compute device can then be activated for the current HALCON thread to start the calculations.

activate_compute_device (DeviceHandle)

Now the calculation can be performed on the compute device.

22.2 Extended Concept 235

derivate_gauss (Image, DerivGauss, 5, 'none')

When the compute device DeviceHandle is not needed anymore, it can be deactivated.

deactivate_compute_device (DeviceHandle)

22.2 Extended Concept

In advanced applications, it is required to gain complete control over the compute device process.

Deactivate Compute
Device

Perform Calculations on
Compute Device

Activate Compute Device

Initialize Compute Device

View/Edit Compute
Device Parameters

Open Compute Device

Get Information about
Compute Device(s)

22.2.1 Get Information about Compute Device(s)

There are two operators that allow you to obtain general information as well as very specific information about
compute devices.

• To find out, which compute devices are available, call the operator query_available_compute_devices.
This operator returns the list of available compute devices.

• In order to get information details on a certain compute device, call the operator
get_compute_device_info.

22.2.2 Open Compute Device

To open a compute device for preparation, open_compute_device has to be called.

C
om

pu
te

D
ev

ic
es

236 Compute Devices

22.2.3 View/Edit Compute Device Parameters

There are two operators that allow you to view and edit parameters for compute devices. The opera-
tor get_compute_device_param lets you query the set parameters for compute devices and the operator
set_compute_device_param allows you to change the settings for compute devices.

The following settings can be viewed or edited:

• For image and buffer cache as well as for pinned memory the cache capacity can be set.

• For image and buffer cache as well as for pinned memory the used cache can be queried.

• Furthermore pinned memory, i.e., memory with a fixed address that cannot be moved, can be allocated. Note
that the transfer rate for this kind of memory is usually faster, however it is essential to increase the cache for
this memory if more may be required.

• Asynchronous execution can be turned on and off.

22.2.4 Initialize Compute Device

To prepare the execution of operators on a compute device, call init_compute_device. It is important to call this
operator before using a compute device, since it prepares the operators that are going to be used for execution on
the compute device by compiling the respective kernel. If init_compute_device is not called, the initialization
is performed ’on demand’ which means that the first time the compute device is used for an operator, it will be
significantly slower.

22.2.5 Activate Compute Device

To activate the execution of operators on the compute device, call activate_compute_device. With this oper-
ator, calculations on the compute device are activated. Note that only one compute device can be active for one
thread. The compute device handle is thread-specific.

22.2.6 Perform Calculations on Compute Device

In this step, calculations can be performed on a compute device. See section 22.6 on page 245 for a list of operators
that can be calculated on a compute device. Note that not all parameter values may be available for using an!
operator on a compute device. Please refer to the operator reference for more information on supported
parameters.

22.2.7 Deactivate Compute Device

To deactivate the execution of operators on the compute device call deactivate_compute_device.

22.2.8 Release Compute Device

Note that for most applications, it is not necessary to release compute devices with the operator re-

lease_compute_device. This operator should only be called for freeing device related resources before un-
loading the HALCON library, if the library was loaded using a mechanism like LoadLibrary or dlopen (to learn
more about this operator, please refer to the reference documentation of release_compute_device).

22.3 Programming Example

This section gives a brief introduction to using the compute device operators provided by HALCON.

22.3 Programming Example 237

22.3.1 How to Use Compute Devices With HALCON

Example: %HALCONEXAMPLES%/hdevelop/System/Compute-Devices/compute_devices.hdev

The example program is designed to show how to use the different compute device operators in HALCON as well
as how to evaluate whether compute devices will speed up an application, in this case an affine transformation.

First, available compute devices are detected and information about the vendor is displayed.

query_available_compute_devices (DeviceIdentifier)

disp_message (WindowHandle, \

'Found ' + |DeviceIdentifier| + ' Compute Device(s):', \

'window', 12, 12, 'black', 'true')
for Index := 0 to |DeviceIdentifier| - 1 by 1

get_compute_device_info (DeviceIdentifier[Index], 'name', DeviceName)

get_compute_device_info (DeviceIdentifier[Index], 'vendor', \

DeviceVendor)

Message[Index] := 'Device #' + Index + ': ' + DeviceVendor + ' ' + \

DeviceName

endfor

disp_message (WindowHandle, Message, 'window', 42, 12, 'white', 'false')

To determine whether the application runs faster with or without the use of compute devices, a benchmark can be
performed. To prepare the time measurement, the compute device is opened , a previously defined DeviceIndex

is used in case several compute devices are found, and the asynchronous execution is deactivated to get comparable
results.

open_compute_device (DeviceIdentifier[DeviceIndex], DeviceHandle)

set_compute_device_param (DeviceHandle, 'asynchronous_execution', 'false')

First the compute device has to be initialized, otherwise the initialization is performed with the first call of the
operator which would influence the results of the comparison. Then the compute device is activated.

init_compute_device (DeviceHandle, 'affine_trans_image')
activate_compute_device (DeviceHandle)

Then input data for the benchmark has to be provided.

read_image (Image, 'rings_and_nuts')

Then the number of benchmark loops is set.

Loops := 200

The operator affine_trans_image is then called once to fill the caches. Then the loops are executed and the
time it takes on the GPU is calculated.

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', 'false')
count_seconds (Before)

for Index := 1 to Loops by 1

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', \

'false')
endfor

count_seconds (After)

TimeGPU := (After - Before) * 1000.0 / Loops

Since the transfer time is also relevant for the decision whether compute devices will improve speed, a modified
version of this benchmark is performed that includes the transfer from CPU to GPU and back. The operator
set_grayval ensures that the image must be transferred to the GPU. The operator get_image_pointer1 ensures
that ImageAffineTrans is transferred back to the CPU.

C
om

pu
te

D
ev

ic
es

238 Compute Devices

count_seconds (Before)

for Index := 1 to Loops by 1

set_grayval (Image, 0, 0, Grayval)

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', \

'false')
get_image_pointer1 (ImageAffineTrans, Pointer, Type, Width, Height)

endfor

count_seconds (After)

TimeGPUinclTransfer := (After - Before) * 1000.0 / Loops

Then the compute device can be deactivated.

deactivate_compute_device (DeviceHandle)

Now the same benchmark is performed on the CPU to compare the results.

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', 'false')
count_seconds (Before)

for Index := 1 to Loops by 1

affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', \

'false')
endfor

count_seconds (After)

TimeCPU := (After - Before) * 1000.0 / Loops

SpeedUp := TimeCPU / TimeGPU

Finally the runtimes of the CPU and GPU are compared. A result may look like the following example (figure 22.1).

Figure 22.1: A benchmark helps to decide whether compute devices improve the speed of an application. In this
case the CPU is a Intel core 2 Duo 3GHz and the compute device is a NVIDIA GeForce GTX 460
graphics card.

22.4 Tips and Tricks

This section is supposed to inform you how to optimize speed while using a compute device but also to help you
with the decision whether compute devices may be useful for a certain application or if it may be just as fast to
process the whole application on the CPU.

To write an own operator that fits into the compute device framework see the Extension Package example exten-
sion_package/useropencl.

22.4.1 Speedup

Since many aspects influence whether using compute devices can improve speed, the only way to know for certain
which is faster, processing on CPU or on CPU and compute device, is to compare the execution times (for an

22.4 Tips and Tricks 239

example how to compare execution times, see section 22.3 on page 236). However, there are quite a few aspects
that may help to improve the speedup or influence the decision whether or not an application benefits from the
use of compute devices. These aspects will be presented in the following sections as well as an example of how
execution times can be compared quickly.

Requirements for Improving Speed with Compute Devices

The highest speedup can be achieved by

• using a high-end graphics card,

• using hardware with high memory bandwidth, and

• creating a well structured program (group compute device operations to minimize transfer between CPU and
compute device).

Memory transfer can be measured with the hbench option (-memory).

Note that HALCON’s operators are automatically parallelized. This means that the available CPU cores are recog-
nized and the threads are then automatically divided without the need for the programmer to interfere. This way,
the speed increases proportionally to the number of processors since operators with AOP are significantly faster.
Therefore it is very important to compare CPU and compute device performance on the same hardware that will
be used in the subsequent application.

Aspects to be Considered

Note that the transfer of data between CPU and compute device is a bottleneck. Using compute devices may only
be an efficient solution if the whole application is faster, i.e., execution time plus transfer time.

Note also that the energy consumption of a graphics card is very high. Graphics cards may also not be designed
for use in an industrial environment. Therefore problems concerning the graphics cards may be:

• They might not be robust against heat or vibrations.

• They may not correct memory errors (ECC).

• They may only perform single-precision floating point operations.

Other aspects that should be considered concerning the transfer are:

• Transfer rate is usually larger for large block sizes.

• Transfer is usually faster when using page locked (pinned) memory (i.e. memory with a fixed address that
can be set via set_compute_device_param).

Using Compute Devices does not Always Improve Speed

It is unlikely that transferring calculations to the compute device will improve speed if

• the CPU is already very fast,

• fast operators are used,

• the transfer times are slow because of

– memory bandwidth or

– large images.

C
om

pu
te

D
ev

ic
es

240 Compute Devices

The Influence of Image Size on Speed

Improving the speed of calculations works most efficiently for large images. Benchmarks have shown that images
with a width that can be divided by four can be calculated faster. Therefore, the performance can be optimized if
an image is either cropped or enlarged such that the width is a multiple of 4 byte, or even better 16 byte, before it
is processed on the compute device.

Note, however, that for some operators performing geometric transformations, the image will be calculated on the
CPU instead of being transfered to the compute device if it is too large. The operator get_compute_device_info
can be used to query image width and height that is supported by the compute device.

Operators

Operators that return sub-pixel precise XLD contours perform in two steps, filtering and extracting the XLD
contours.

If calculations are executed on the compute device, the filtering is performed directly on the compute device. The
filtered images are transfered back to the CPU for XLD extraction.

This transfer back to the CPU is relevant for the total execution time. For this reason, it is important to have a PC
with high transfer rate between CPU- and compute device memory.

Allocating Cache for Maximum Performance

Two kinds of caches are used on the compute device, buffer (for filters like mean_image or sobel_amp) and
images (for geometric transformations). For maximum performance, we recommend to allocate those two kinds of
cache before executing an operator. Otherwise, the runtime will be higher since memory is allocated dynamically.
The default of those caches is one third of the available memory each (to change the maximum size of the compute
device image cache, use set_compute_device_param (DeviceHandle, ’buffer_cache_capacity’)).

22.4.2 Measuring Execution Times

When using compute devices, processes on the compute device and on the CPU are performed asynchronously by
default. A visualization of asynchronous processing can be found in figure 22.2.

Asynchronous processing has many advantages:

• Operators that are processed on the CPU do not have to wait for the compute device operators.

• CPU and compute device process in parallel.

However, due to the asynchronous processing even though the general execution time may decrease, the execution
time of single operator may not be measured correctly because an operator might wait for another one. Therefore,
to get the exact execution times, asynchronous processing has to be turned off.

22.4.2.1 Using Synchronous Processing for Test Purposes

If synchronous processing is required, e.g., if execution time of a single operator should be measured with
set_compute_device_param, the generic parameter DeviceHandle ’asynchronous_execution’ should be
set to ’false’. Note however that for measuring the execution time of an application, the default setting ’true’

should be used to achieve the best performance.

The example %HALCONEXAMPLES%/hdevelop/System/Compute-Devices/compute_devices.hdev shows
how to perform a benchmark (see also section 22.3.1 on page 237) and how to make sure that the image is re-
ally transfered to the compute device and therefore if the transfer time is included in the time measurements.

22.4 Tips and Tricks 241

CPU GPU

Start transfer

find_shape_model

threshold

derivate_gauss

Figure 22.2: As default, operators are processed asynchronously on CPU and compute device.

22.4.3 Exchanging or Simulating Operators that do not support Compute De-
vices

Some operators that do not support compute devices can be simulated by other operators.

Use the operator convol_image to replace linear filters like

• laplace,

• bandpass_image,

• or any other arbitrary filter mask.

22.4.3.1 Domain and Region Processing

All compute devices that are addressed via OpenCL are optimized for the processing of images not regions. There-
fore the domain cannot be used to reduce the area to which the operator is applied. The main reason for this is that
the whole image needs to be transferred to the compute device.

These operators are

• binomial_filter,

• convol_image,

• derivate_gauss,

• median_image,

• sobel_amp,

• sobel_dir,

• lines_gauss,

C
om

pu
te

D
ev

ic
es

242 Compute Devices

• edges_image,

• edges_sub_pix

To reduce transfer and execution times of images with reduced domains as far as possible, crop the image, e.g.,
with the operator crop_domain before they are transferred to the compute device. Note that, depending on the
filter size of the operator to be executed, the domain of the image should be suitably enlarged before the call of
crop_domain.

22.4.3.2 Simulating Region Processing

In this paragraph, the simulation of region processing is shown for the example of color segmentation. Color
segmentation can be sped up by using compute devices instead of just the CPU. In order to calculate the complete
color segmentation on a compute device and therefore reduce transfer time, region processing has to be simulated.
This is done by creating binary images, i.e., images with exactly two gray values. In the following example,
these gray values are 0 and 255. Pixels with a gray value of 0 are defined as outside of the region whereas
pixels with a value of 255 are recognized as within the region. Therefore regular morphology operators (like, e.g.
dilation_rectangle1 can be replaced by gray-value morphology operators (like, e.g., gray_dilation_rect).

In the example below, the blue plastic part of a fuse should be detected. This example first shows which operator
calls solve this problem on the CPU and then which operators are used for the same solution on a compute device.
figure 22.3 shows the results of each step of the region processing on the CPU compared to the results of simulated
region processing on a compute device.

1

Step

CPU

2

3

4

Original image

Compute Device

Figure 22.3: Region processing for color images on the CPU and simulated region processing on a com-
pute device. Steps (CPU:GPU) 1) threshold : lut_trans (Hue) 2) threshold : lut_trans

(Saturation), 3) intersection : min_image 4) dilation_rectangle1 and erosion_rectangle1 :
gray_dilation_rect and gray_erosion_rect..

First, an image is read. For further processing, the three-channel image is converted into three images.

read_image (ColorFuses00, 'color/color_fuses_00.png')
decompose3 (ColorFuses00, Image1, Image2, Image3)

22.4 Tips and Tricks 243

The image is subsequently transformed into the color space ’hsv’ with the operator trans_from_rgb. Then the
region is processed on the CPU. For this purpose, regions with a certain hue and saturation are selected (see
figure 22.3, steps 1 and 2).

trans_from_rgb (Image1, Image2, Image3, Hue, Saturation, ImageResult3, \

'hsv')
threshold (Hue, Region, 125, 145)

threshold (Saturation, Region1, 100, 255)

Now to combine the two regions, the intersection of the two resulting regions of the thresholds is calculated (see
figure 22.3 on page 242, step 3). To reduce this region to the blue plastic part of the fuse, the morphology operators
dilation_rectangle1 and erosion_rectangle1 are used (see figure 22.3 on page 242, step 4). Now the upper
part of the blue fuse can be determined.

intersection (Region, Region1, RegionIntersection)

dilation_rectangle1 (RegionIntersection, RegionDilation, 11, 11)

erosion_rectangle1 (RegionDilation, RegionErosion, 91, 31)

dilation_rectangle1 (RegionErosion, RegionDilation1, 81, 21)

The same process can be simulated on a compute device. A fast solution to start processing color images on a
compute device is to transfer the Bayer image to the compute devices where the operator cfa_to_rgb can be
executed to transform it into a color image.

Only a subset of the color space transformations can be processed on the compute device with trans_from_rgb

(as shown in this example) and trans_to_rgb.

trans_from_rgb (Image1, Image2, Image3, Hue, Saturation, ImageResult3, \

'hsv')

All other color space transformations can be simulated with linear_trans_color. If the color in an image
changes, this effect can be corrected by modifying TransMat as explained in the reference documentation of
linear_trans_color.

Instead of using a threshold like on the CPU, the image is scaled such that all pixels belonging to the object are
mapped to the gray value 255 and all that are outside of the object are mapped to 0. To speed up this mapping, a
LUT transformation is applied. Two look-up tables are used for further processing.

The first LUT maps three gray-value ranges. The values

• 0 to 124 are mapped to 0,

• 125 to 145 are mapped to 255, and

• 146 to 255 are mapped to 0.

LUT_125_145 := [gen_tuple_const(125,0),gen_tuple_const(21,255), \

gen_tuple_const(110,0)]

The second LUT maps two gray-value ranges. The values

• 0 to 99 are mapped to 0 and

• 100 to 255 are mapped to 255.

LUT_100_255 := [gen_tuple_const(100,0),gen_tuple_const(156,255)]

The result of using the defined LUTs with the operators lut_trans for hue and saturation are two byte images
with only two different gray values: 0 and 255 (see figure 22.3 on page 242, steps 1 and 2).

C
om

pu
te

D
ev

ic
es

244 Compute Devices

lut_trans (Hue, HueThresh, LUT_125_145)

lut_trans (Saturation, SaturationThresh, LUT_100_255)

By calculating the minimum of both images and using the two gray-value morphology operators
gray_dilation_rect and gray_erosion_rect, the blue plastic part of the fuse can be determined (see fig-
ure 22.3 on page 242, steps 3 to 4).

min_image (HueThresh, SaturationThresh, ImageIntersection)

gray_dilation_rect (ImageIntersection, ImageMax, 11, 11)

gray_erosion_rect (ImageMax, ImageMin, 31, 91)

gray_dilation_rect (ImageMin, ImageMax1, 21, 81)

Note that it must be considered that the runtime of gray-value morphology operators increases with the size of
the filter masks whereas operators like opening_rectangle1 that perform region morphology have a constant
runtime that is independent from the size of the structuring element.

Operators using regions like union, intersection, and difference are simulated on the compute device with
the operators max_image, min_image, and sub_image if the regions are represented as binary images.

22.4.4 Limitations

For other operators, only certain parameters may be supported for being processed on a compute device.

A few examples are listed here:

• median_image can only be used with filter mask sizes 3x3 and 5x5

• derivate_gauss can only be used with a limited number of filters and maximum smoothing with sigma
20.7 (depending on the filter this value can even be lower),

• trans_from_rgb can only be used for color spaces ’cielab’, ’hsv’ and ’hsi’.

These are just some examples for limitations. Remember to always check which parameter settings are avail-!
able for an operator that is processed on a compute device. If only a certain subset of values is available for
a parameter, this information is listed just beneath the regular values under List of values (for compute

devices):.

For more information on limitations, please refer to the Installation Guide (in section 1.5.1 on page 12).

22.4.5 Multithreading

22.4.5.1 Using One Compute Device

To use one compute device in different threads, the compute device needs to be opened in each thread separately.
Thus, one compute device is represented by different compute device handles. Note that each compute device
handle is treated as a separate device and cannot access data stored on the other ’devices’ without copying to the
CPU first.

We do not advice to use one compute device in multiple threads, because you need a lot of synchronization logic
to make sure that the compute device is not used simultaneously by another thread, and that the results are shared
correctly between threads. Thus, you may end up with a complicated code.

If you look at the operator reference for e.g., activate_compute_device under the heading ’Execution Infor-
mation’, you will see that the multithreading scope is local. This means that compute device operators must only
be called from the thread that created the compute device handle, and compute device handles must not be shared
across threads.

Note, however, if you try to access the same image object from different threads using the same compute device,
an error will be raised.

22.5 Technical Details 245

22.4.5.2 Using More Than One Compute Device

If planning to use more than one compute device, it should be checked whether the PC hardware is able to!
handle this. It is important to always install the latest graphics driver. If the compute device is accessed via
a Linux system, the user must be member of the ’video’ group.

By default only one compute device is used if the compute device is activated with activate_compute_device.
If another compute device has been activated previously, this compute device is automatically deactivated for the
current thread.

It is, however, possible to use more than one compute device. Then, one thread per device must be used. Each
thread connects to its compute device and starts processing. Since this does not cost much execution time, all
threads can run on the same CPU.

22.5 Technical Details

Please refer to the websites of NVIDIA, ATI/AMD and Intel for a list of compatible cards. To check the per-
formance of a card, it is useful to measure the runtimes and transfer times which can be done via hbench -

compute_device [-ref] or as described in the example section 22.3 on page 236.

The following technical characteristics should be taken into account when considering to use compute devices:

• Power/Performance Ratio In some applications the power consumption and/or the emitted heat is of impor-
tance. It can therefore be useful to compare different cards with respect to their performance and consumed
power.

• Robustness It is useful to check whether a compute device was designed for industrial use.

22.6 Operators Supporting Compute Devices

If an operator supports compute devices, this is stated in the section “Execution Information” of its entry in the
operator reference manual. This information can also be queried with the operator get_operator_info. The
following HDevelop program generates a list of all operators that support compute devices:

get_operator_name ('', Operators)

GPUOperators := []

SupportedDevices := []

for I := 0 to |Operators|-1 by 1

get_operator_info (Operators[I], 'compute_device', Information)

if (Information != 'none')
GPUOperators := [GPUOperators, Operators[I]]

SupportedDevices := [SupportedDevices, Information]

endif

endfor

C
om

pu
te

D
ev

ic
es

246 Compute Devices

I/O Devices 247

Chapter 23

I/O Devices

HALCON supports I/O devices to perform data-acquisition, e.g., to read sensor values or write control data. To
let you concentrate on the actual machine vision problem, HALCON provides you with interfaces performing this
interaction for a large number of I/O devices (see http://www.mvtec.com/products/interfaces).

Within your HALCON application, communication with I/O devices is thus reduced to a few lines of code, i.e., a
few operator calls. What’s more, this simplicity is not achieved at the cost of limiting the available functionality.

23.1 Basic Concept

Communicating with I/O devices basically consists of three steps.

Close Connection

Read/Write Values

Open Connection

23.1.1 Open Connection

If you want to read or write values on an I/O device, the first step is to connect to this device and open a trans-
mission channel. HALCON relieves you of all device-specific details; all you need to do is to call the operator
open_io_device, specifying the name of the corresponding I/O device interface. Once the connection is estab-
lished, the available transmission channels can be queried with query_io_device. A transmission channel is
opened using the operator open_io_channel. Afterwards, the transmission channel is used to read and write
actual values.

23.1.2 Read/Write Values

Having opened a transmission channel, you read and write values using the operators read_io_channel and
write_io_channel, respectively.

23.1.3 Close Image Acquisition Device

At the end of the application, you close the connection to the I/O transmission channel and the device to free its
resources by first calling the operator close_io_channel, followed by the operator close_io_device.

I/O
D

ev
ic

es

http://www.mvtec.com/products/interfaces

248 I/O Devices

23.1.4 A First Example

The following code reads values from an I/O device of name IoInterfaceName:

open_io_device (IOInterfaceName, DeviceName[0], [], [], IoDeviceHandle)

query_io_device (IoDeviceHandle, [], 'io_channel_names.digital_input', \

ChannelsInput)

open_io_channel (IoDeviceHandle, ChannelsInput[Channel0], [], [], IoHandle0)

read_io_channel (IoHandle0, Value0, Status0)

close_io_channel ([IoHandle0,IoHandle1])

close_io_device (IoDeviceHandle)

23.2 Extended Concept

Many applications involving I/O devices are straightforward, but in some cases additional configuration work is
required. Therefore, HALCON allows to further parameterize the data acquisition process.

Close Connection

Read/Write Data

Set Parameters

Open Connection

Control I/O Device

23.2.1 Control I/O Device Interface

Depending on the used I/O device interface, certain actions may be performed on the interface before a connection
to an actual device is being established. As an example, the OPC UA interface uses this mechanism to handle
certificates for encrypted data acquisition sessions. These I/O interface actions are performed using the operator
control_io_interface. See the documentation of your I/O device interface for detailed information.

23.2.2 Open Connection

You can query the available devices and other information of your I/O device interface using the operator
query_io_interface. When connecting to your date acquisition device with open_io_device, the main pa-
rameters are the name of the corresponding HALCON I/O device interface and the name of the device itself. As
a result, you obtain a so-called handle, with which you can access the device later, e.g., to open a transmission
channel. Using the obtained handle of the transmission channel, you can acquire date with read_io_channel or
write_io_channel.

With the generic parameters of open_io_device you can describe the configuration of your I/O device, which is
necessary when using more complex configurations.

Detailed information about the parameters of open_io_device can be found in the documentation of your I/O
device interface. More information is available for download from MVTec’s web server under http://www.
mvtec.com/products/interfaces.

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

23.3 Programming Examples 249

23.2.3 Set Parameters

As described above, you can already set parameters when connecting to the I/O device with open_io_device.
These parameters are the so-called generic parameters, because they are specific to the corresponding I/O inter-
faces. However, data acquisition devices differ widely regarding the provided functionality, leading to many more
special parameters. These parameters can be customized with the operator set_io_device_param.

With the operator get_io_device_param you can query the current values of the parameters.

23.3 Programming Examples

Example programs for all provided I/O interfaces can be downloaded via the “MVTec Software Manager” (SOM)
or at http://www.mvtec.com/products/interfaces.

23.4 Tips & Tricks

23.4.1 Unsupported I/O Devices

If you want to use an I/O device that is currently not supported by HALCON, i.e., for which no HALCON I/O
device interface exists, you can create your own interface. A description how to create and integrate an I/O device
interface as well as a template source code that can be used as the basis of an integration can be downloaded from
MVTec’s web server under http://www.mvtec.com/products/interfaces.

I/O
D

ev
ic

es

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

250 I/O Devices

Index 251

Index

1D measuring
relations to other methods, 52
basic concept, 45
examples, 48
extended concept, 46
overview, 45

3D matching
relations to other methods, 110
basic concept, 101
examples, 106
extended concept, 104
overview, 101

3D reconstruction, 15

access external images, 24
acquire data

basic concept, 247
acquire image(s)

basic concept, 22
extended concept, 23

acquire search data for 3D matching (deformable
surface-based)

basic concept, 103
acquire search data for 3D matching (surface-based)

basic concept, 103
activate compute device

basic concept, 234
extended concept, 236

adjust bar code model
extended concept, 161

align regions of interest or images for OCR
extended concept, 186

alignment, 27
apply texture filter

basic concept, 144
extended concept, 146

automatic text reader, 187
available compute devices

extended concept, 235

bar code
relations to other methods, 172
basic concept, 159
examples, 168
extended concept, 160
overview, 159

blob analysis
relations to other methods, 42
basic concept, 33
examples, 36
extended concept, 34

overview, 33

calibrate multiple cameras
basic concept, 216

check decoding of Gray code patterns, 76
check print quality of bar code

extended concept, 166
check print quality of data code

extended concept, 179
check variation model quality

extended concept, 114
classification

relations to other methods, 128
basic concept, 119
examples, 124
extended concept, 122
overview, 119

classify colors
extended concept, 134

classify data
basic concept, 121

clear training data of variation model
extended concept, 115

close I/O device
basic concept, 247

close image acquisition device
basic concept, 22

color inspection, 14
color processing

basic concept, 131
examples, 134
extended concept, 132
overview, 131

compare image with variation model
basic concept, 112

completeness check, 14
compose channels for color processing

extended concept, 134
compute devices

basic concept, 233
examples, 236
extended concept, 235
overview, 233

connected components, 43
contour processing

relations to other methods, 88
basic concept, 79
examples, 84
extended concept, 81
overview, 79

control I/O device interface

In
de

x

252 Index

extended concept, 248
convert and access XLD contours

extended concept, 83
create 3D matching model

basic concept, 102
create bar code model

basic concept, 159
extended concept, 161

create classifier
basic concept, 120

create data code model
basic concept, 175
extended concept, 177

create measure object for 1D measuring
basic concept, 46
extended concept, 47

create region
basic concept, 25
extended concept, 27

create region of interest
basic concept, 25
extended concept, 28

create structured light model
basic concept, 71

create training samples from system fonts, 188
create variation model

basic concept, 112
create XLD contours

basic concept, 79
extended concept, 81

data code
basic concept, 175
examples, 179
extended concept, 176
overview, 175

deactivate compute device
basic concept, 234
extended concept, 236

decompose channels for color processing
basic concept, 131

Deep OCR
relations to other methods, 213
basic concept, 209
examples, 211
overview, 209

deflectometry
basic concept, 70
examples, 71
overview, 69

demosaick Bayer pattern for color processing
extended concept, 132

determine bar code parameters by training, 163
determine contour attributes for edge extraction

(subpixel-precise)
extended concept, 65

displaying
basic concept, 223
extended concept, 225

draw region

extended concept, 26

edge extraction (pixel-precise)
overview, 55

edge extraction (pixel-precise): deep learning
examples, 61
overview, 60

edge extraction (pixel-precise): filter
relations to other methods, 60
basic concept, 55
examples, 58
extended concept, 56
overview, 55

edge extraction (subpixel-precise)
relations to other methods, 68
basic concept, 63
examples, 66
extended concept, 64
overview, 63

effect of region of interest shape on speed up, 31
effects of programming environment on visualization

method, 230
evaluate classifier

extended concept, 124
extract color edges, 141
extract color lines, 141
extract edges (pixel-precise)

basic concept, 56
extended concept, 57

extract edges or lines (subpixel-precise)
basic concept, 63
extended concept, 65

extract features for blob analysis
basic concept, 34
extended concept, 36

extract features of XLD contours
basic concept, 81
extended concept, 83

extract segmentation parameters for blob analysis,
187

extended concept, 35

Fast Fourier Transform (FFT), 152
features for optical character recognition (OCR), 200
features for texture analysis

basic concept, 144
extended concept, 146

filter image for edge extraction (pixel-precise)
basic concept, 56
extended concept, 57

find 3D matching model
basic concept, 103

find model for matching
basic concept, 91

flicker-free visualization method, 230
fuzzy measuring, 53

gray-value profile, 53

handling graphics windows

Index 253

basic concept, 223
extended concept, 224

high-accuracy blob analysis, 44
high-accuracy stereo vision, 221

I/O device
basic concept, 247
examples, 249
extended concept, 248
overview, 247

identification, 14
image acquisition

basic concept, 21
examples, 23
extended concept, 22
overview, 21

information about compute device
basic concept, 234
extended concept, 235

initialize compute device
basic concept, 234
extended concept, 236

inspect 3D matching model
extended concept, 105

inspect 3D object model
extended concept, 105

inspect data code(s)
extended concept, 178

manual text finder, 187
matching

relations to other methods, 98
basic concept, 90
overview, 89

measure (1D measuring)
basic concept, 46

measure with gray-value threshold (1D measuring),
53

measuring and comparison 2D, 14
measuring and comparison 3D, 15
model creation (training)

basic concept, 90
mouse interaction

extended concept, 225

object recognition 2D, 15
object recognition 3D, 15
open compute device

basic concept, 234
extended concept, 235

open I/O device
basic concept, 247
extended concept, 248

open image acquisition device
basic concept, 21
extended concept, 22

optical character recognition (OCR)
relations to other methods, 200
basic concept, 184
examples, 190

extended concept, 185
overview, 183

optimize model of data code
extended concept, 178

parameters of compute device
extended concept, 236

perform fitting of XLD contours
basic concept, 80
extended concept, 83

position recognition 2D, 16
position recognition 3D, 16
prepare variation model

basic concept, 112
preprocess image(s) (filtering) for blob analysis

extended concept, 35
preprocess image(s) (filtering) for OCR

extended concept, 186
preprocess image(s) bar code

extended concept, 160
print inspection, 16
process edges (pixel-precise)

extended concept, 57
process image (channels) for color processing

basic concept, 132
process regions for blob analysis, 27

extended concept, 36
process XLD contours

basic concept, 80
extended concept, 66, 82

programmed visualization method, 231

radiometrically calibrate image(s) for 1D measuring
extended concept, 46

radiometrically calibrate image(s) for edge extrac-
tion (subpixel-precise)

extended concept, 64
re-use 3D matching model

extended concept, 105
re-use classifier

extended concept, 123
re-use classifier training samples

extended concept, 123
re-use measure object, 52
re-use region of interest, 31
read 3D object model

basic concept, 102
read bar code

basic concept, 159
extended concept, 163

read circular print, 200
read composed symbols, 200
read data code(s)

basic concept, 176
extended concept, 178

read symbol
basic concept, 184
extended concept, 189

reconstruct 3D information with stereo
basic concept, 217

In
de

x

254 Index

rectify image(s) for optical character recognition
(OCR)

extended concept, 186
rectify image(s) for stereo

basic concept, 217
region of interest

relations to other methods, 31
basic concept, 25
examples, 28
extended concept, 26
overview, 25

release compute device
extended concept, 236

remote visualization method, 231
robot vision, 17

scale down image(s) for texture analysis
extended concept, 145

security system, 17
segment image(s) for blob analysis, 26

basic concept, 34
extended concept, 36

segment image(s) for optical character recognition
(OCR)

basic concept, 184
extended concept, 187

select classifier training samples, 129
set parameters for I/O device

extended concept, 249
set parameters for image acquisition

extended concept, 23
set parameters of compute device

extended concept, 236
set timeout for bar code reader, 173
set timeout for data code reader, 181
speed up bar code reader, 162
speed up blob analysis, 43
speed up color processing, 141
speed up deflectometry, 78
speed up edge extraction (pixel-precise), 60
speed up stereo vision, 221
speed up visualization method, 229
stereo vision

relations to other methods, 221
basic concept, 215
examples, 218
extended concept, 217
overview, 215

structured light
overview, 69

suppress clutter or noise for 1D measuring, 52
surface inspection, 17
synchronize camera with monitor (deflectometry),

77
synchronize camera with projector (deflectometry),

78

texture analysis
relations to other methods, 152
basic concept, 144

examples, 147
extended concept, 145
overview, 143

texture analysis in color images, 152
texture inspection, 18
train classifier

basic concept, 121
extended concept, 122

train colors
extended concept, 133

train model of 2D data code
extended concept, 178

train optical character recognition (OCR)
basic concept, 184
extended concept, 188

train variation model
basic concept, 112

transform color space
extended concept, 133

transform results of 1D measuring into 3D (world)
coordinates

extended concept, 47
transform results of blob analysis into 3D (world) co-

ordinates
extended concept, 36

transform results of contour processing into 3D
(world) coordinates

extended concept, 83
transform results of edge extraction (subpixel-

precise) into 3D (world) coordinates
extended concept, 66

unsupported I/O device, 249
unsupported image acquisition device, 24
use bar code autodiscrimination, 163
use binary images as region of interest, 31
use line scan camera for blob analysis, 43
use line scan camera for contour processing, 88
use line scan camera for optical character recognition

(OCR), 200
use optical character recognition (OCR) for classifi-

cation, 129
use region of interest for stereo

extended concept, 217
use results of texture analysis

extended concept, 147

variation model (image comparison)
basic concept, 111
examples, 115
extended concept, 114
overview, 111

visualization
basic concept, 223
examples, 226
extended concept, 224
overview, 223

visualization quality for zoomed regions, 230
visualize results of 1D measuring

extended concept, 47

Index 255

visualize results of 3D matching
extended concept, 105

visualize results of color processing
extended concept, 134

write window content, 229

In
de

x

	1 Guide to HALCON Methods
	1.1 Color Inspection
	1.2 Completeness Check
	1.3 Identification
	1.4 Measuring and Comparison 2D
	1.5 Measuring and Comparison 3D
	1.6 Object Recognition 2D
	1.7 Object Recognition 3D
	1.8 Position Recognition 2D
	1.9 Position Recognition 3D
	1.10 Print Inspection
	1.11 Quality Inspection
	1.12 Robot Vision
	1.13 Security System
	1.14 Surface Inspection
	1.15 Texture Inspection
	1.16 Text Processing
	1.16.1 String Encoding

	2 Image Acquisition
	2.1 Basic Concept
	2.1.1 Open Image Acquisition Device
	2.1.2 Acquire Image(s)
	2.1.3 Close Image Acquisition Device
	2.1.4 A First Example

	2.2 Extended Concept
	2.2.1 Open Image Acquisition Device
	2.2.2 Set Parameters
	2.2.3 Acquire Image(s)

	2.3 Programming Examples
	2.4 Tips & Tricks
	2.4.1 Direct Access to External Images in Memory
	2.4.2 Unsupported Image Acquisition Devices

	3 Region Of Interest
	3.1 Basic Concept
	3.1.1 Create Region
	3.1.2 Create ROI
	3.1.3 A First Example

	3.2 Extended Concept
	3.2.1 Segment Image(s)
	3.2.2 Draw Region
	3.2.3 Create Region
	3.2.4 Process Regions
	3.2.5 Align ROIs or Images
	3.2.6 Create ROI
	3.2.7 Visualize Results

	3.3 Programming Examples
	3.3.1 Processing inside a User Defined Region
	3.3.2 Interactive Partial Filtering of an Image
	3.3.3 Inspecting the Contours of a Tool

	3.4 Relation to Other Methods
	3.5 Tips & Tricks
	3.5.1 Reuse ROI
	3.5.2 Effect of ROI Shape on Speed Up
	3.5.3 Binary Images

	4 Blob Analysis
	4.1 Basic Concept
	4.1.1 Acquire Image(s)
	4.1.2 Segment Image(s)
	4.1.3 Extract Features
	4.1.4 A First Example

	4.2 Extended Concept
	4.2.1 Use Region of Interest
	4.2.2 Align ROIs or Images
	4.2.3 Rectify Image(s)
	4.2.4 Preprocess Image(s) (Filtering)
	4.2.5 Extract Segmentation Parameters
	4.2.6 Segment Image(s)
	4.2.7 Process Regions
	4.2.8 Extract Features
	4.2.9 Transform Results Into World Coordinates
	4.2.10 Visualize Results

	4.3 Programming Examples
	4.3.1 Crystals
	4.3.2 Atoms
	4.3.3 Analyzing Particles
	4.3.4 Extracting Forest Features from Color Infrared Image
	4.3.5 Checking a Boundary for Fins
	4.3.6 Bonding Balls
	4.3.7 Surface Scratches

	4.4 Relation to Other Methods
	4.4.1 Methods that are Useful for Blob Analysis
	4.4.2 Methods that are Using Blob Analysis
	4.4.3 Alternatives to Blob Analysis

	4.5 Tips & Tricks
	4.5.1 Connected Components
	4.5.2 Speed Up

	4.6 Advanced Topics
	4.6.1 Line Scan Cameras
	4.6.2 High Accuracy

	5 1D Measuring
	5.1 Basic Concept
	5.1.1 Acquire Image(s)
	5.1.2 Create Measure Object
	5.1.3 Measure

	5.2 Extended Concept
	5.2.1 Radiometrically Calibrate Image(s)
	5.2.2 Align ROIs or Images
	5.2.3 Rectify Image(s)
	5.2.4 Create Measure Object
	5.2.5 Transform Results Into World Coordinates
	5.2.6 Visualize Results

	5.3 Programming Examples
	5.3.1 Inspecting a Fuse
	5.3.2 Inspect Cast Part
	5.3.3 Inspecting an IC Using Fuzzy Measuring
	5.3.4 Measuring Leads of a Moving IC
	5.3.5 Inspect IC

	5.4 Relation to Other Methods
	5.4.1 Alternatives to 1D Measuring

	5.5 Tips & Tricks
	5.5.1 Suppress Clutter or Noise
	5.5.2 Reuse Measure Object
	5.5.3 Use an Absolute Gray Value Threshold

	5.6 Advanced Topics
	5.6.1 Fuzzy Measuring
	5.6.2 Evaluation of Gray Values

	6 Edge Extraction (Pixel-Precise)
	6.1 Edge Extraction Using Edge Filters
	6.1.1 Basic Concept
	6.1.2 A First Example
	6.1.3 Extended Concept
	6.1.4 Programming Examples
	6.1.5 Relation to Other Methods
	6.1.6 Tips & Tricks

	6.2 Deep-Learning-Based Edge Extraction
	6.2.1 Concept
	6.2.2 Programming Examples

	7 Edge Extraction (Subpixel-Precise)
	7.1 Basic Concept
	7.1.1 Acquire Image(s)
	7.1.2 Extract Edges Or Lines
	7.1.3 A First Example

	7.2 Extended Concept
	7.2.1 Radiometrically Calibrate Image(s)
	7.2.2 Use Region Of Interest
	7.2.3 Extract Edges Or Lines
	7.2.4 Determine Contour Attributes
	7.2.5 Process XLD Contours
	7.2.6 Transform Results Into World Coordinates
	7.2.7 Visualize Results

	7.3 Programming Examples
	7.3.1 Measuring the Diameter of Drilled Holes
	7.3.2 Angiography

	7.4 Relation to Other Methods
	7.4.1 Alternatives to Edge Extraction (Subpixel-Precise)

	8 Structured Light
	8.1 Basic Concept
	8.1.1 Create Structured Light Model
	8.1.2 Set Model Parameters
	8.1.3 Generate Pattern Images
	8.1.4 Acquire Images
	8.1.5 Decode Images
	8.1.6 Get Results

	8.2 Programming Examples
	8.2.1 Inspecting a Tap Collar
	8.2.2 Inspecting a Partially Specular Surface

	8.3 Tips & Tricks
	8.3.1 Set Up the Measurement
	8.3.2 Check the Decoding Results
	8.3.3 Synchronize the Camera with the Pattern Source
	8.3.4 Speed Up the Acquisition Process

	9 Contour Processing
	9.1 Basic Concept
	9.1.1 Create XLD Contours
	9.1.2 Process XLD Contours
	9.1.3 Perform Fitting
	9.1.4 Extract Features
	9.1.5 A First Example

	9.2 Extended Concept
	9.2.1 Create XLD Contours
	9.2.2 Process XLD Contours
	9.2.3 Perform Fitting
	9.2.4 Transform Results Into World Coordinates
	9.2.5 Extract Features
	9.2.6 Convert And Access XLD Contours
	9.2.7 Visualize Results

	9.3 Programming Examples
	9.3.1 Measuring Lines and Arcs
	9.3.2 Close Gaps in a Contour
	9.3.3 Calculate Pointwise Distance between XLD Contours
	9.3.4 Extract Roads

	9.4 Relation to Other Methods
	9.4.1 Alternatives to Contour Processing

	9.5 Advanced Topics
	9.5.1 Line Scan Cameras

	10 2D Matching
	10.1 Basic Concept
	10.1.1 Acquire Image(s)
	10.1.2 Create (Train) Model
	10.1.3 Find Model

	10.2 Programming Examples
	10.2.1 A First Example
	10.2.2 Correlation-based Matching: Find Label in Texture
	10.2.3 Shape-based Matching: Align the Image to Read Text
	10.2.4 Local Deformable Matching: Find Deformed Logo
	10.2.5 Perspective Deformable Matching: Locate Road Signs
	10.2.6 Descriptor-based Matching: Locate Brochure Pages

	10.3 Relation to Other Methods
	10.3.1 Methods that are Using Matching
	10.3.2 Alternatives to Matching

	11 3D Matching
	11.1 Basic Concept
	11.1.1 Access 3D Object Model
	11.1.2 Create Approach-Specific 3D Model
	11.1.3 Acquire Search Data
	11.1.4 Find Approach-Specific 3D Model
	11.1.5 A First Example

	11.2 Extended Concept
	11.2.1 Inspect 3D Object Model
	11.2.2 Inspect Approach-Specific 3D Model
	11.2.3 Re-use Approach-Specific 3D Model
	11.2.4 Use Region Of Interest
	11.2.5 Visualize Results

	11.3 Programming Examples
	11.3.1 Recognize 3D Clamps and Their Poses in Images
	11.3.2 Recognize Pipe Joints and Their Poses in a 3D Scene

	11.4 Relation to Other Methods
	11.4.1 Alternatives to 3D Matching

	12 Variation Model
	12.1 Basic Concept
	12.1.1 Acquire Image(s)
	12.1.2 Create Variation Model
	12.1.3 Align ROIs or Images
	12.1.4 Train Variation Model
	12.1.5 Prepare Variation Model
	12.1.6 Compare Variation Model
	12.1.7 A First Example

	12.2 Extended Concept
	12.2.1 Check Model Quality
	12.2.2 Clear Training Data
	12.2.3 Visualize Results

	12.3 Programming Examples
	12.3.1 Inspect a Printed Logo Using a Single Reference Image
	12.3.2 Inspect a Printed Logo under Varying Illumination

	13 Classification
	13.1 Basic Concept
	13.1.1 Acquire Image(s)
	13.1.2 Create Classifier
	13.1.3 Train Classifier
	13.1.4 Classify Data
	13.1.5 A First Example

	13.2 Extended Concept
	13.2.1 Train Classifier
	13.2.2 Re-use Training Samples
	13.2.3 Re-use Classifier
	13.2.4 Evaluate Classifier
	13.2.5 Visualize Results

	13.3 Programming Examples
	13.3.1 Inspection of Plastic Meshes via Texture Classification
	13.3.2 Classification with Overlapping Classes

	13.4 Relation to Other Methods
	13.4.1 Methods that are Useful for Classification
	13.4.2 Methods that are Using Classification
	13.4.3 Alternatives to Classification

	13.5 Tips & Tricks
	13.5.1 OCR for General Classification

	13.6 Advanced Topics
	13.6.1 Selection of Training Samples

	14 Color Processing
	14.1 Basic Concept
	14.1.1 Acquire Image(s)
	14.1.2 Decompose Channels
	14.1.3 Process Image (Channels)
	14.1.4 A First Example

	14.2 Extended Concept
	14.2.1 Demosaick Bayer Pattern
	14.2.2 Transform Color Space
	14.2.3 Train Colors
	14.2.4 Use Region Of Interest
	14.2.5 Classify Colors
	14.2.6 Compose Channels
	14.2.7 Visualize Results

	14.3 Programming Examples
	14.3.1 Robust Color Extraction
	14.3.2 Sorting Fuses
	14.3.3 Completeness Check of Colored Game Pieces
	14.3.4 Inspect Power Supply Cables
	14.3.5 Locating Board Components by Color

	14.4 Tips & Tricks
	14.4.1 Speed Up

	14.5 Advanced Topics
	14.5.1 Color Edge Extraction
	14.5.2 Color Line Extraction

	15 Texture Analysis
	15.1 Basic Concept
	15.1.1 Acquire Image(s)
	15.1.2 Apply Texture Filter
	15.1.3 Compute Features
	15.1.4 A First Example

	15.2 Extended Concept
	15.2.1 Rectify Image(s)
	15.2.2 Scale Down Image(s)
	15.2.3 Use Region of Interest
	15.2.4 Align ROIs or Images
	15.2.5 Apply Texture Filter
	15.2.6 Compute Features
	15.2.7 Visualize Results
	15.2.8 Use Results

	15.3 Programming Examples
	15.3.1 Detect Defects in a Texture with Novelty Detection
	15.3.2 Detect Defects in a Web Using Dynamic Thresholding
	15.3.3 Classification of Different Types of Wood

	15.4 Relation to Other Methods
	15.4.1 Methods that are Using Texture Analysis

	15.5 Advanced Topics
	15.5.1 Fast Fourier Transform (FFT)
	15.5.2 Texture Analysis in Color Images

	15.6 More Information About Texture Features
	15.6.1 Entropy and Anisotropy ([file:../reference/referencehdevelop.pdf]entropy_gray)
	15.6.2 Cooccurrence Matrix ([file:../reference/referencehdevelop.pdf]gen_cooc_matrix)
	15.6.3 Features of the Cooccurrence Matrix

	15.7 More Information About Texture Filtering
	15.7.1 The Laws Filter ([file:../reference/referencehdevelop.pdf]texture_laws)

	16 Bar Code
	16.1 Basic Concept
	16.1.1 Acquire Image(s)
	16.1.2 Create Bar Code Model
	16.1.3 Read Bar Code(s)
	16.1.4 A First Example

	16.2 Extended Concept
	16.2.1 Use Region Of Interest
	16.2.2 Preprocess Image(s)
	16.2.3 Rectify Image(s)
	16.2.4 Create Bar Code Model
	16.2.5 Adjust Bar Code Model
	16.2.6 Read Bar Code(s)
	16.2.7 Check Print Quality
	16.2.8 Visualize Results

	16.3 Programming Examples
	16.3.1 How to Read Difficult Barcodes
	16.3.2 Reading a Bar Code on a CD
	16.3.3 Checking Bar Code Print Quality

	16.4 Relation to Other Methods
	16.4.1 Alternatives to Bar Code

	16.5 Advanced Topics
	16.5.1 Use Timeout

	17 Data Code
	17.1 Basic Concept
	17.1.1 Acquire Image(s)
	17.1.2 Create Data Code Model
	17.1.3 Read Data Code(s)
	17.1.4 A First Example

	17.2 Extended Concept
	17.2.1 Acquire Image(s)
	17.2.2 Rectify Image(s)
	17.2.3 Create Data Code Model
	17.2.4 Optimize Model
	17.2.5 Train Model
	17.2.6 Use Region Of Interest
	17.2.7 Read Data Code(s)
	17.2.8 Inspect Data Code(s)
	17.2.9 Check Print Quality
	17.2.10 Visualize Results

	17.3 Programming Examples
	17.3.1 Training a Data Code Model
	17.3.2 Reading 2D Data Codes on Chips

	17.4 Advanced Topics
	17.4.1 Use Timeout

	18 OCR (character classification)
	18.1 Basic Concept
	18.1.1 Acquire Image(s)
	18.1.2 Segment Image(s)
	18.1.3 Train OCR
	18.1.4 Read Symbol
	18.1.5 A First Example

	18.2 Extended Concept
	18.2.1 Use Region of Interest
	18.2.2 Align ROIs or Images
	18.2.3 Rectify Image(s)
	18.2.4 Preprocess Image(s) (Filtering)
	18.2.5 Extract Segmentation Parameters
	18.2.6 Segment Image(s)
	18.2.7 Train OCR
	18.2.8 Read Symbol
	18.2.9 Visualize Results

	18.3 Programming Examples
	18.3.1 Generating a Training File
	18.3.2 Creating and Training an OCR Classifier
	18.3.3 Reading Numbers
	18.3.4 "Best Before" Date
	18.3.5 Reading Engraved Text
	18.3.6 Reading Forms
	18.3.7 Segment and Select Characters
	18.3.8 Syntactic and Lexicon-Based Auto-Correction of OCR Results

	18.4 Relation to Other Methods
	18.4.1 Alternatives to OCR

	18.5 Tips & Tricks
	18.5.1 Composed Symbols

	18.6 Advanced Topics
	18.6.1 Line Scan Cameras
	18.6.2 Circular Prints
	18.6.3 OCR Features

	18.7 Pretrained OCR Fonts
	18.7.1 Pretrained Fonts with Regularized Weights and Rejection Class
	18.7.2 Nomenclature for the Ready-to-Use OCR Fonts
	18.7.3 Ready-to-Use OCR Font 'Document'
	18.7.4 Ready-to-Use OCR Font 'DotPrint'
	18.7.5 Ready-to-Use OCR Font 'HandWritten_0-9'
	18.7.6 Ready-to-Use OCR Font 'Industrial'
	18.7.7 Ready-to-Use OCR Font 'OCR-A'
	18.7.8 Ready-to-Use OCR Font 'OCR-B'
	18.7.9 Ready-to-Use OCR Font 'Pharma'
	18.7.10 Ready-to-Use OCR Font 'SEMI'
	18.7.11 Ready-to-Use OCR Font 'Universal'

	19 OCR (Deep OCR)
	19.1 Basic Concept
	19.1.1 Offline Phase
	19.1.2 Online Phase

	19.2 Retrain Model (Recognition & Detection Component)
	19.3 Programming Examples
	19.3.1 Locate and Recognize Text
	19.3.2 Retrain Recognition Component
	19.3.3 Retrain Detection Component

	19.4 Large images
	19.5 Relation to Other Methods

	20 Stereo Vision
	20.1 Basic Concept
	20.1.1 Acquire Calibration Image(s)
	20.1.2 Calibrate Stereo Camera System
	20.1.3 Acquire Stereo Image(s)
	20.1.4 Rectify Image(s)
	20.1.5 Reconstruct 3D Information

	20.2 Extended Concept
	20.2.1 Use Region Of Interest
	20.2.2 Transform Results Into World Coordinates
	20.2.3 Visualize Results

	20.3 Programming Examples
	20.3.1 Segment the Components of a Board With Binocular Stereo
	20.3.2 Reconstruct the Surface of Pipe Joints With Multi-View Stereo

	20.4 Relation to Other Methods
	20.4.1 Methods that are Using Stereo Vision

	20.5 Tips & Tricks
	20.5.1 Speed Up

	20.6 Advanced Topics
	20.6.1 High Accuracy

	21 Visualization
	21.1 Basic Concept
	21.1.1 Handling Graphics Windows
	21.1.2 Displaying
	21.1.3 A First Example

	21.2 Extended Concept
	21.2.1 Handling Graphics Windows
	21.2.2 Displaying
	21.2.3 Mouse Interaction

	21.3 Programming Examples
	21.3.1 Displaying HALCON data structures

	21.4 Tips & Tricks
	21.4.1 Saving Window Content
	21.4.2 Execution Time

	21.5 Advanced Topics
	21.5.1 Programming Environments
	21.5.2 Flicker-Free Visualization
	21.5.3 Visualization Quality for Regions when Zooming
	21.5.4 Remote Visualization
	21.5.5 Programmed Visualization

	22 Compute Devices
	22.1 Basic Concept
	22.1.1 Query Available Compute Devices
	22.1.2 Open Compute Device
	22.1.3 Initialize Compute Device
	22.1.4 Activate Compute Device
	22.1.5 Perform Calculations on Compute Device
	22.1.6 Deactivate Compute Device
	22.1.7 A First Example

	22.2 Extended Concept
	22.2.1 Get Information about Compute Device(s)
	22.2.2 Open Compute Device
	22.2.3 View/Edit Compute Device Parameters
	22.2.4 Initialize Compute Device
	22.2.5 Activate Compute Device
	22.2.6 Perform Calculations on Compute Device
	22.2.7 Deactivate Compute Device
	22.2.8 Release Compute Device

	22.3 Programming Example
	22.3.1 How to Use Compute Devices With HALCON

	22.4 Tips and Tricks
	22.4.1 Speedup
	22.4.2 Measuring Execution Times
	22.4.3 Exchanging or Simulating Operators that do not support Compute Devices
	22.4.4 Limitations
	22.4.5 Multithreading

	22.5 Technical Details
	22.6 Operators Supporting Compute Devices

	23 I/O Devices
	23.1 Basic Concept
	23.1.1 Open Connection
	23.1.2 Read/Write Values
	23.1.3 Close Image Acquisition Device
	23.1.4 A First Example

	23.2 Extended Concept
	23.2.1 Control I/O Device Interface
	23.2.2 Open Connection
	23.2.3 Set Parameters

	23.3 Programming Examples
	23.4 Tips & Tricks
	23.4.1 Unsupported I/O Devices

	Index

