
a product of MVTec

Solution Guide II-A
Image Acquisition

HALCON 24.11 Progress-Steady

The Art of Image Acquisition, Version 24.11.1.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2002-2024 by MVTec Software GmbH, Munich, Germany

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Linux ® is a registered trademark of Linus Torvalds.
Microsoft, Windows, Microsoft .NET, Visual C++ and Visual Basic are either trademarks or registered trademarks of Microsoft
Corporation.
UNIX® is a registered trademark of The Open Group.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

Obviously, the acquisition of images is a task to be solved in all machine vision applications. Unfortunately,
this task mainly consists of interacting with special, non-standardized hardware in form of image acquisition
devices, i.e., cameras or frame grabber boards. To let you concentrate on the actual machine vision problem,
HALCON already provides interfaces performing this interaction for a large number of image acquisition devices
(see section 1 on page 7).

Within your HALCON application, the task of image acquisition is thus reduced to a few lines of code, i.e., a
few operator calls, as can be seen in section 2 on page 9. What’s more, this simplicity is not achieved at the cost
of limiting the available functionality: Using HALCON, you can acquire images from various configurations of
frame grabbers and cameras (see section 3 on page 11) in different timing modes (see section 5 on page 21).

If not stated otherwise the example programs that are presented in this Solution Guide can be downloaded
along with the interfaces via the “MVTec Software Manager” (SOM) or at http://www.mvtec.com/products/
interfaces. Note that most programs are preconfigured to work with a certain HALCON acquisition interface;
in this case, the name of the program contains the name of the interface. To use the program with another image
acquisition device, please adapt the parts which open the connection to the device.

Please refer to the Programmer’s Guide, chapter 7 on page 51 and chapter 19 on page 127, for information about
how to compile and link the C++ and C example programs; among other things, they describe how to use the
example makefiles for Unix-like systems which can be found in the subdirectories c and cpp of the directory
%HALCONEXAMPLES%. Under Windows, you can use Visual Studio workspaces containing the examples, which can
be found in the subdirectory win parallel to the source files.

Symbols

The following symbol is used within the manual:

! This symbol indicates an information you should pay attention to.

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

Contents

1 The Philosophy Behind the HALCON Acquisition Interfaces 7

2 A First Example 9

3 Connecting to Your Image Acquisition Device 11
3.1 Opening a Connection to a Specified Configuration . 11
3.2 Connecting to Multiple Boards and Cameras . 12

3.2.1 Single Camera . 13
3.2.2 Multiple Boards . 13
3.2.3 Multiple Handles Per Board . 13
3.2.4 Port Switching . 13
3.2.5 Simultaneous Grabbing (Only For Specific Interfaces) 14

3.3 Requesting Information About the Image Acquisition Interface 14

4 Configuring the Acquisition 17
4.1 General Parameters . 17
4.2 Special Parameters . 18
4.3 Fixed vs. Dynamic Parameters . 19

5 The Various Modes of Grabbing Images 21
5.1 Real-Time Image Acquisition . 21

5.1.1 Non-Real-Time Grabbing Using grab_image . 21
5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras 23
5.1.3 Volatile Grabbing . 23
5.1.4 Real-Time Grabbing Using grab_image_async . 24
5.1.5 Continuous Grabbing . 26
5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras 27
5.1.7 Specifying a Maximum Delay . 27

5.2 Using an External Trigger . 28
5.2.1 Special Parameters for External Triggers . 29

5.3 Acquiring Images From Multiple Cameras . 29
5.3.1 Dynamic Port Switching and Asynchronous Grabbing 29
5.3.2 Simultaneous Grabbing . 31

6 Miscellaneous 33
6.1 Acquiring Images From Standardized Image Acquisition Devices 33
6.2 Acquiring Images From Unsupported Image Acquisition Devices 34
6.3 Grabbing Image Arrays and Preprocessed Image Data . 35
6.4 Error Handling . 35

6.4.1 Error Handling in HDevelop . 36
6.4.2 Error Handling Using HALCON/C . 37
6.4.3 Error Handling Using HALCON/C++ . 37
6.4.4 Error Handling Using HALCON/.NET . 38

6.5 Callback Functions . 38
6.6 Line Scan Cameras . 39

A HALCON Images 43
A.1 The Philosophy of HALCON Images . 43

A.2 Image Tuples (Arrays) . 44
A.3 HALCON Operators for Handling Images . 44

A.3.1 Creation . 44
A.3.2 Channels . 44
A.3.3 Domain . 44
A.3.4 Access . 44
A.3.5 Manipulation . 45
A.3.6 Image Tuples . 45

B Parameters Describing the Image 47
B.1 Image Size . 47
B.2 Image Data . 48

C Object Appearance 49
C.1 Lighting . 49

C.1.1 Reflection Properties of the Object . 49
C.1.2 Characteristics of the Light Source . 50

C.2 Geometry . 52

Index 55

The Philosophy Behind the HALCON Acquisition Interfaces A-7

Chapter 1

The Philosophy Behind the HALCON
Acquisition Interfaces

From the point of view of a user developing software for a machine vision application, the acquisition of images
is only a prelude to the actual machine vision task. Of course it is important that images are acquired at the correct
moment or rate, and that the camera and the frame grabber are configured suitably, but these tasks seem to be
elementary, or at least independent of the used image acquisition device.

The reality, however, looks different. Image acquisition devices differ widely regarding the provided functionality,
and even if their functionality is similar, the SDKs (software development kit) provided by the manufacturers do
not follow any standard so far. Therefore, switching to a different image acquisition device probably requires to
rewrite the image acquisition part of the application.

HALCON’s answer to this problem are its image acquisition interfaces (IAI) which are provided to currently
more than 50 frame grabbers and hundreds of industrial cameras (analog, Camera Link, USB 2.0, IEEE 1394, and
GigE) in form of dynamically loadable libraries (Windows: DLLs; Linux: shared libraries). HALCON image
acquisition interfaces bridge the gap between the individual image acquisition devices and the HALCON library,
which is independent of the used image acquisition device, computer platform, and programming language (see
figure 1.1). In other words, they

• provide a standardized interface to the HALCON user in form of 15 HALCON operators, and

• encapsulate details specific to the frame grabber or camera, i.e., the interaction with the SDK provided by
the device manufacturer.

Therefore, if you decide to switch to a different image acquisition device, all you need to do is to install the
corresponding driver and SDK provided by the manufacturer and to use different parameter values when calling
the HALCON operators; the operators themselves stay the same.

computer

camera

software
frame

grabber

hAcqxyz.dll

HALCON xyz acquisition interface

device driver & SDK

HALCON image processing library
halcon.dll & halconc/cpp/dotnet/x.dll

HALCON application
HDevelop / C / C++ / C# / Visual Basic

Figure 1.1: From the camera to a HALCON application.

In fact, the elementary tasks of image acquisition are covered by two HALCON operators:

• open_framegrabber connects to the image acquisition device and sets general parameters, e.g., the type of
the used camera or the port the camera is connected to, then

P
hi

lo
so

ph
y

A-8 The Philosophy Behind the HALCON Acquisition Interfaces

• grab_image (or grab_image_async, see section 5.1 on page 21 for the difference) grabs images. If not
only a single image but an array of images or preprocessed image data like regions or contours have to be
grabbed, grab_data or grab_data_async can be used (see also section 6.3 on page 35).

If an image acquisition device provides additional functionality, e.g., on-board modification of the image signal,
special grabbing modes, or digital output lines, it is available via the operator set_framegrabber_param (see
section 4 on page 17).

Note, that for some image acquisition devices the full functionality is not available within HALCON; please refer to
the corresponding online documentation which can be found in the directory %HALCONROOT%\doc\html\manuals
or via the HALCON folder in the Windows start menu (if you installed the documentation). The latest information
can be found under http://www.mvtec.com/products/interfaces.

If the image acquisition device you want to use is not (yet) supported by HALCON, you can nevertheless use it
together with HALCON. Please refer to section 6.2 on page 34 for more details.

Since digital cameras, which are connected by USB 2.0, IEEE 1394 or GigE, are not really based on an actual frame
grabber board, we no longer use the term HALCON frame grabber interface. Instead, we use the term HALCON
acquisition interface, and the term image acquisition device is used as a substitute for either a frame grabber
board or a digital camera. For backwards compatibility reasons, the names of the HALCON operators have been
unchanged, thus, the operator names open_framegrabber, info_framegrabber, and close_framegrabber

may sound a little bit old-fashioned.

http://www.mvtec.com/products/interfaces

A First Example A-9

Chapter 2

A First Example

In this section we start with a simple image acquisition task, which uses the image acquisition device in its de-
fault configuration and the standard grabbing mode. The grabbed images are then segmented. To follow the
example actively, start the HDevelop program %HALCONEXAMPLES%\solution_guide\image_acquisition\

first_example_acquisition.hdev, then press Run once to initialize the application.

You can also learn about image acquisition and many other topics in interactive online courses at our MVTec
Academy.

Step 1: Connect to the frame grabber

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'false', CameraType, myBoard, -1, -1, AcqHandle)

When opening the connection to your image acquisition device using the operator open_framegrabber, the
main parameter is the Name of the corresponding HALCON acquisition interface. As a result, you obtain a so-
called handle (AcqHandle), by which you can access the image acquisition device, e.g., in calls to the operator
grab_image.

In the example, default values are used for most other parameters (’default’ or -1); section 4.1 on page 17 takes
a closer look at this topic. How to connect to more complex frame grabber and camera configurations is described
in section 3 on page 11.

Step 2: Grab an image

grab_image (Image, AcqHandle)

b)a)

Figure 2.1: a) Acquired image; b) processed image (automatic segmentation).

Fi
rs

tE
xa

m
pl

e

https://academy.mvtec.com/cstart/course/200
https://academy.mvtec.com/cstart/course/200

A-10 A First Example

After successfully connecting to your image acquisition device you can grab images by calling the operator
grab_image with the corresponding handle AcqHandle. More advanced modes of grabbing images are described
in section 5 on page 21.

Step 3: Grab and process images in a loop

while (Button != 1)

grab_image (Image, AcqHandle)

auto_threshold (Image, Regions, 4)

connection (Regions, ConnectedRegions)

get_mposition (WindowHandleButton, Row, Column, Button)

endwhile

In the example, the grabbed images are then automatically segmented using the operator auto_threshold (see
figure 2.1). This is done in a loop which can be exited by clicking into a window with the left mouse button.

Connecting to Your Image Acquisition Device A-11

Chapter 3

Connecting to Your Image Acquisition
Device

In this section, we show how to connect to different configurations of frame grabber(s) and camera(s), ranging
from the simple case of one camera connected to one frame grabber board to more complex ones, e.g., multiple
synchronized cameras connected to one or more boards.

3.1 Opening a Connection to a Specified Configuration

With the operator open_framegrabber you open a connection to an image acquisition device. This connection is
described by four parameters (see figure 3.1): First, you select an acquisition interface with the parameter Name.
The parameter Device specifies the actual board or camera; depending on the acquisition interface, this parameter
can contain a string describing the board or simply a number (in form of a string!).

Often, the camera can be connected to the frame grabber at different ports, whose number can be selected via the
parameter Port (in rare cases LineIn). The parameter CameraType describes the connected camera: For analog
cameras, this parameter usually specifies the used signal norm, e.g., ’ntsc’. For digital cameras, this parameter
typically specifies the camera model; more complex acquisition interfaces use this parameter to select a camera
configuration file.

camera type abc

camera type xyz

port 0

port 1

port 0

port 1

Name Device Port CameraType

which camera?which port?which device?

AcqHandle

which interface?

SDK & IAI A

SDK & IAI B

board 0

frame

grabber

board 1

frame

grabber

Figure 3.1: Describing a connection with the parameters of open_framegrabber.

C
on

ne
ct

in
g

A-12 Connecting to Your Image Acquisition Device

As a result, open_framegrabber returns a handle for the opened connection in the parameter AcqHandle. Note
that if you use HALCON’s C++ interface and call the operator via the corresponding classes, e.g., HFramegrabber
in C++, no handle is returned because the instance of the class itself acts as your handle.

With HDevelop’s Image Acquisition Assistant you can easily connect to your image acquisition device and choose
suitable parameters (for details see the HDevelopUser’s Guide, section 7.1 on page 180), which is very useful to
setup your vision system (illumination, focus, field of view).

3.2 Connecting to Multiple Boards and Cameras

Most HALCON acquisition interfaces allow to use multiple frame grabber boards and cameras. However, there
is more than one way to connect cameras and boards and to access these configurations from within HALCON.
Below, we describe the different configurations; please check the online documentation of the HALCON interface
for your image acquisition device (see %HALCONROOT%\doc\html\manuals, the HALCON folder in the Windows
start menu, or http://www.mvtec.com/products/interfaces) which configurations it supports.

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 0

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

frame grabber

board 1

frame grabber

board 0

port 0handle 0

a)

handle 1 port 0

handle 0 port 0

b)

handle 0

port 0

port 1port switch

d)

port 0

port 1

port 0

HImage[3]

handle 0

f)

port 1

port 0

handle 0

HImage[2]

e)

port 0handle 2

port 1

port 0

handle 0

handle 1

c)

Figure 3.2: a) single board with single camera; b) multiple boards with one camera each; c) multiple boards with one
or more cameras; d) single board with multiple cameras and port switching; e) single board with multiple
cameras and simultaneous grabbing; f) simultaneous grabbing with multiple boards and cameras.

http://www.mvtec.com/products/interfaces

3.2 Connecting to Multiple Boards and Cameras A-13

3.2.1 Single Camera

Figure 3.2a shows the simplest configuration: a single camera connected to a single board, accessible via a single
handle. Some frame grabbers, especially digital ones, only support this configuration; as described in the follow-
ing section, you can nevertheless use multiple cameras with such frame grabbers by connecting each one to an
individual board. Note that this configuration is the typical one in case of digital cameras connected by USB 2.0,
IEEE 1394, or GigE.

3.2.2 Multiple Boards

Figure 3.2b shows a configuration with multiple cameras, each connected to a separate board. In this case you call
the operator open_framegrabber once for each connection as in the HDevelop example program %HALCONEX-

AMPLES%\solution_guide\image_acquisition\multiple_boards.hdev.

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', Board0, -1, -1, AcqHandle0)

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', Board1, -1, -1, AcqHandle1)

In this example, the two calls differ only in the value for the parameter Device (’0’ and ’1’); of course, you can
use different values for other parameters as well, and even connect to different image acquisition interfaces.

To grab images from the two cameras, you simply call the operator grab_image once with the two handles returned
by the two calls to open_framegrabber:

grab_image (Image0, AcqHandle0)

grab_image (Image1, AcqHandle1)

3.2.3 Multiple Handles Per Board

Many frame grabbers provide multiple input ports and thus allow to connect more than one camera to the board.
Depending on the HALCON acquisition interface, this configuration is accessed in different ways which are de-
scribed in this and the following sections.

The standard HALCON method to connect to the cameras is depicted in figure 3.2c: Each connection gets its
own handle, i.e., open_framegrabber is called once for each camera with different values for the parameter
Port, like in the HDevelop example program %HALCONEXAMPLES%\solution_guide\image_acquisition\

multiple_ports.hdev:

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', Board0, Port0, -1, AcqHandle0)

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', Board1, Port1, -1, AcqHandle1)

grab_image (Image0, AcqHandle0)

grab_image (Image1, AcqHandle1)

As figure 3.2c shows, you can also use multiple boards with multiple connected cameras.

3.2.4 Port Switching

Some image acquisition interfaces do not access the cameras via multiple handles, but by switching the input port
dynamically (see figure 3.2d). Therefore, open_framegrabber is called only once, like in the HDevelop example
program %HALCONEXAMPLES%\solution_guide\image_acquisition\port_switching.hdev:

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', 'default', 0, -1, AcqHandle)

C
on

ne
ct

in
g

A-14 Connecting to Your Image Acquisition Device

Between grabbing images you switch ports using the operator set_framegrabber_param (see section 4.2 on
page 18 for more information about this operator):

set_framegrabber_param (AcqHandle, 'port', Port0)

dev_set_window (WindowHandle0)

grab_image (Image0, AcqHandle)

set_framegrabber_param (AcqHandle, 'port', Port1)

dev_set_window (WindowHandle1)

grab_image (Image1, AcqHandle)

Note that port switching only works for compatible (similar) cameras because open_framegrabber is only called
once, i.e., the same set of parameters values is used for all cameras. In contrast, when using multiple handles as
described above, you can specify different parameter values for the individual cameras (with some board-specific
limitations).

3.2.5 Simultaneous Grabbing (Only For Specific Interfaces)

In the configurations described above, images were grabbed from the individual cameras by multiple calls to the
operator grab_image. In contrast, some acquisition interfaces allow to grab images from multiple cameras with
a single call to grab_image, which then returns a multi-channel image (see figure 3.2e; appendix A.1 on page 43
contains more information about multi-channel images). This mode is called simultaneous grabbing (or parallel
grabbing); like port switching, it only works for compatible (similar) cameras. For example, you can use this mode
to grab synchronized images from a stereo camera system. Note that simultaneous grabbing is available only!
for very few image acquisition interfaces.

In this mode, open_framegrabber is called only once, as can be seen in the HDevelop example program %HAL-

CONEXAMPLES%\solution_guide\image_acquisition\simultaneous_grabbing.hdev:

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'default', 'default', 'default', 0, -1, AcqHandle)

You can check the number of returned images (channels) using the operator count_channels

grab_image (SimulImages, AcqHandle)

count_channels (SimulImages, num_channels)

and extract the individual images, e.g., using decompose2, decompose3 etc., depending on the number of images:

if (num_channels == 2)

decompose2 (SimulImages, Image0, Image1)

Alternatively, you can convert the multi-channel image into an image array using image_to_channels and then
select the individual images via select_obj.

Note that some acquisition interfaces allow simultaneous grabbing also for multiple boards (see figure 3.2f). Please
refer to section 5.3.2 on page 31 for additional information.

3.3 Requesting Information About the Image Acquisition Interface

As mentioned already, the individual HALCON acquisition interfaces are described in detail on HTML pages
which can be found in the directory %HALCONROOT%\doc\html\manuals or in the HALCON folder in the Win-
dows start menu (if you installed the documentation). Another way to access information about an image acquisi-
tion interface is to use the operator info_framegrabber.

In the HDevelop example program %HALCONEXAMPLES%\solution_guide\image_acquisition\

info_framegrabber.hdev (preconfigured for the HALCON 1394IIDC interface, please adapt the interface
name for your own image acquisition device) this operator is called multiple times to query the version number
of the interface, the available devices, port numbers, camera types, and the default values for all parameters of

3.3 Requesting Information About the Image Acquisition Interface A-15

open_framegrabber; the result, i.e., the values displayed in the HDevelop Variable Window, is depicted in
figure 3.3.

info_framegrabber (AcqName, 'general', GeneralInfo, GeneralValue)

info_framegrabber (AcqName, 'revision', RevisionInfo, RevisionValue)

info_framegrabber (AcqName, 'info_boards', BoardsInfo, BoardsValue)

info_framegrabber (AcqName, 'generic', GenericInfo, GenericValue)

info_framegrabber (AcqName, 'camera_type', CamTypeInfo, CamTypeValue)

info_framegrabber (AcqName, 'defaults', DefaultsInfo, DefaultsValue)

The operator info_framegrabber can be called before actually connecting to an image acquisition device with
open_framegrabber. The only condition is that the HALCON acquisition interface and the device driver and
SDK have been installed.

Figure 3.3: An example result of the operator info_framegrabber.

C
on

ne
ct

in
g

A-16 Connecting to Your Image Acquisition Device

Configuring the Acquisition A-17

Chapter 4

Configuring the Acquisition

As explained in section 1 on page 7, the intention of HALCON’s acquisition interfaces is to provide the user with
a common interface for many different image acquisition devices. This interface is kept as simple as possible; as
shown, you can connect to your frame grabber or camera and grab a first image using only two operators.

However, HALCON’s second goal is to make the full functionality of an image acquisition device available to
the user. As image acquisition devices differ widely regarding the provided functionality, this is a difficult task to
realize within a simple, common interface. HALCON solves this problem by dividing the task of configuring an
image acquisition device connection into two parts: Those parameters which are common to most acquisition in-
terfaces (therefore called general parameters) are set when calling the operator open_framegrabber. In contrast,
the functionality which is not generally available can be configured by setting so-called special parameters using
the operator set_framegrabber_param.

4.1 General Parameters

When opening a connection via open_framegrabber, you can specify the following general parameters:

HorizontalResolution,
VerticalResolution

spatial resolution of the transferred image in relation to the original
size (see appendix B.1 on page 47)

ImageWidth, ImageHeight,
StartRow, StartColumn

size and upper left corner of the transferred image in relation to the
original size (see appendix B.1 on page 47)

Field grabbing mode for analog cameras, e.g., interlaced-scan,
progressive-scan, field grabbing

BitsPerChannel, ColorSpace data contained in a pixel (number of bits, number of channels, color
encoding, see appendix B.2 on page 48)

Generic generic parameter with device-specific meaning

ExternalTrigger hooking the acquisition of images to an external trigger signal (see
also section 5.2 on page 28)

CameraType, Device, Port, LineIn configuration of frame grabber(s) and camera(s) from which images
are to be acquired (see section 3.1 on page 11)

In section 3.1 on page 11, we already encountered the parameters describing the frame grabber / camera configura-
tion. Most of the other parameters of open_framegrabber specify the image format; they are described in more
detail in appendix B on page 47. The parameter ExternalTrigger activates a special grabbing mode which is
described in detail in section 5.2 on page 28.

Note that when calling open_framegrabber you must specify values for all parameters, even if your acquisition
interface does not support some of them or uses values specified in a camera configuration file instead. To alle-
viate this task, the HALCON acquisition interfaces provide suitable default values which are used if you specify
’default’ or -1 for string or numeric parameters, respectively. The actually used default values can be queried
using the operator info_framegrabber as shown in section 3.3 on page 14.

C
on

fig
ur

in
g

A-18 Configuring the Acquisition

Figure 4.1: Querying available special parameters via info_framegrabber.

After connecting to a frame grabber or camera, you can query the current values of general parameters using
the operator get_framegrabber_param; some interfaces even allow to modify general parameters dynamically.
Please refer to section 4.3 on page 19 for more information about these topics.

4.2 Special Parameters

Even the functionality that is not generally available for all image acquisition devices can be accessed
and configured with a general mechanism: by setting corresponding special parameters via the operator
set_framegrabber_param. Typical parameters are, for example:

’grab_timeout’ timeout after which the operators grab_image and
grab_image_async stop waiting for an image and re-
turn an error (see also section 5.2.1 on page 29 and section 6.4
on page 35)

’volatile’ enable volatile grabbing (see also section 5.1.3 on page 23)

’continuous_grabbing’ switch on a special acquisition mode which is necessary for
some image acquisition devices to achieve real-time perfor-
mance (see also section 5.1.5 on page 26)

’trigger_signal’ signal type used for external triggering, e.g., rising or falling
edge

’image_width’, ’image_height’,
’start_row’, ’start_column’,
’generic’, ’external_trigger’,
’port’

“duplicates” of some of the general parameters described in
section 4.1 on page 17, allowing to modify them dynamically,
i.e., after opening the connection (see also section 4.3)

Depending on the acquisition interface, various other parameters may be available, which allow, e.g., to add an
offset to the digitized video signal or modify the brightness or contrast, to specify the exposure time or to trigger a
flash. Some acquisition interfaces offer special parameters for the use of line scan cameras (see also section 6.6 on
page 39), or parameters controlling digital output and input lines.

Which special parameters are provided by an acquisition interface is described in the already mentioned online
documentation. You can also query this information by calling the operator info_framegrabber as shown below;
figure 4.1 depicts the result of double-clicking ParametersValue in the Variable Window after executing the line:

info_framegrabber (AcqName, 'parameters', ParametersInfo, ParametersValue)

4.3 Fixed vs. Dynamic Parameters A-19

To set a parameter, you call the operator set_framegrabber_param, specifying the name of the parameter to set
in the parameter Param and the desired value in the parameter Value. For example, in section 3.2.4 on page 13
the following line was used to switch to port 0:

set_framegrabber_param (AcqHandle, 'port', Port0)

You can also set multiple parameters at once by specifying tuples for Param and Value as in the following line:

set_framegrabber_param (AcqHandle, ['image_width','image_height'], [256, \

256])

For all parameters which can be set with set_framegrabber_param except those with the prefix ’do_’, you
can query the current value using the operator get_framegrabber_param. Some interfaces also allow to query
additional information like minimum and maximum values for the parameters. In this example, an interface is
queried for the minimum and maximum gamma values:

get_framegrabber_param (AcqHandle, 'gamma_range', GammaRange)

MinGamma := GammaRange[0]

MaxGamma := GammaRange[1]

Thus, you can check a new brightness value against those boundaries before setting it:

get_framegrabber_param (AcqHandle, 'gamma', CurrentGamma)

NewGamma := CurrentGamma + 1.0

if (NewGamma > MaxGamma)

NewGamma := MaxGamma

endif

set_framegrabber_param (AcqHandle, 'gamma', NewGamma)

4.3 Fixed vs. Dynamic Parameters

The distinction between fixed and dynamic parameters is made relating to the lifetime of a connection to an
image acquisition device. Fixed parameters, e.g., the CameraType, are set once when opening the connection
with open_framegrabber. In contrast, those parameters which can be modified via set_framegrabber_param
during the use of the connection are called dynamic parameters.

As already noted in section 4.2 on page 18, some image acquisition interfaces allow to modify general parameters
like ImageWidth or ExternalTrigger dynamically via set_framegrabber_param, by providing a correspond-
ing special parameter with the same name but written with small letters and underscores, e.g., ’image_width’ or
’external_trigger’.

Independent of whether a general parameter can be modified dynamically, you can query its current value by
calling the operator get_framegrabber_param with its “translated” name, i.e., capitals replaced by small letters
and underscores as described above.

C
on

fig
ur

in
g

A-20 Configuring the Acquisition

The Various Modes of Grabbing Images A-21

Chapter 5

The Various Modes of Grabbing
Images

Section 2 on page 9 showed that grabbing images is very easy in HALCON – you just call grab_image! But of
course there’s more to image grabbing than just to get an image, e.g., how to assure an exact timing. This section
therefore describes more complex grabbing modes.

5.1 Real-Time Image Acquisition

As a technical term, the attribute real-time means that a process guarantees that it meets given deadlines. Please
keep in mind that none of the standard operating systems, i.e., neither Windows nor Linux, are real-time

!operating systems. This means that the operating system itself does not guarantee that your application will get
the necessary processing time before its deadline expires. From the point of view of a machine vision application
running under a non-real-time operating system, the most you can do is assure that real-time behavior is not already
prevented by the application itself.

In a machine vision application, real-time behavior may be required at multiple points:

Image delay: The camera must “grab” the image, i.e., expose the chip, at the correct moment, i.e., while the part
to be inspected is completely visible.

Frame rate: The most common real-time requirement for a machine vision application is to “reach frame rate”,
i.e., acquire and process all images the camera produces.

Processing delay: The image processing itself must complete in time to allow a reaction to its results, e.g., to
remove a faulty part from the conveyor belt. As this point relates only indirectly to the image acquisition it
is ignored in the following.

5.1.1 Non-Real-Time Grabbing Using grab_image

Figure 5.1 shows the timing diagram for the standard grabbing mode, i.e., if you use the operator grab_image from
within your application. This operator call is “translated” by the HALCON acquisition interface and the SDK into
the corresponding signal to the frame grabber board (marked with ’Grab’). Obviously, in case of digital cameras
connected by USB 2.0, IEEE 1394 or GigE there is no actual frame grabber board; nevertheless, the principles of
the various grabbing modes remain the same.

The frame grabber now waits for the next image. In the example, a free-running analog progressive-scan camera is
used, which produces images continuously at a fixed frame rate; the start of a new image is indicated by a so-called
vertical sync signal. The frame grabber then digitizes the incoming analog image signal and transforms it into an
image matrix. If a digital camera is used, the camera itself performs the digitizing and transfers a digital signal
which is then transformed into an image matrix by the frame grabber.

The image is then transferred from the frame grabber into computer memory via the PCI bus using DMA (direct
memory access). This transfer can either be incremental as depicted in figure 5.1, if the frame grabber has only

G
ra

bb
in

g

A-22 The Various Modes of Grabbing Images

create
HImage

frame rate
original

frame rate
original

frame rate
original

delay
image

frame rate
processing

expose expose expose expose

application

IAI & SDK

delay image

frame

grabber

camera t

t

t

t

t

t
software

create
HImage

digitize digitize
wait for
vsync

wait for
vsync

wait for
image

grab_image

wait for
image

Grab Grab
(DMA)

transfer

(analog)

transfer

process process
grab_image

Figure 5.1: Standard timing using grab_image (configuration: free-running progressive-scan camera, frame grabber
with incremental image transfer).

a FIFO buffer, or in a single burst as depicted in figure 5.2 on page 23, if the frame grabber has a frame buffer
on board. The advantage of the incremental transfer is that the transfer is concluded earlier. In contrast, the burst
mode is more efficient; furthermore, if the incremental transfer via the PCI bus cannot proceed for some reason,
a FIFO overflow results, i.e., image data is lost. Note that in both modes the transfer performance depends on
whether the PCI bus is used by other devices as well!

When the image is completely stored in the computer memory, the HALCON acquisition interface transforms
it into a HALCON image and returns the control to the application which processes the image and then calls
grab_image again. However, even if the processing time is short in relation to the frame rate, the camera has
already begun to transfer the next image which is therefore “lost”; the application can therefore only process every
second image.

You can check this behavior using the HDevelop example program %HALCONEXAMPLES%\solution_guide\

image_acquisition\real_time_grabbing.hdev, which determines achievable frame rates for grabbing and
processing (here: calculating a difference image) first separately and then together as follows:

grab_image (BackgroundImage, AcqHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image (Image, AcqHandle)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImage := (Seconds2 - Seconds1) / 20

FrameRateGrabImage := 1 / TimeGrabImage

To see the non-deterministic image delay, execute the operator grab_image in the step mode by pressing Step;
the execution time displayed in HDevelop’s status bar will range between once and twice the original frame period.
Please note that on Linux systems, the time measurements are performed with a lower resolution than on Windows
systems.

5.1 Real-Time Image Acquisition A-23

frame rate
original

delay
image

= 0

create
HImage

frame rate
processing

expose expose

application

IAI & SDK

frame

grabber

camera t

t

t

t

t

t
software grab_image

digitize

Expose

wait for
vsync

Grab

Expose

wait for
vsync digitize

wait for
image

create
HImage

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

grab_image

Figure 5.2: Using an asynchronously resettable camera together with grab_image (configuration: progressive-scan
camera, frame grabber with burst transfer, volatile grabbing).

5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras

If you use a free-running camera, the camera itself determines the exact moment an image is acquired (exposed).
This leads to a delay between the moment you call grab_image and the actual image acquisition (see figure 5.1).
The delay is not deterministic, but at least it is limited by the frame rate; for example, if you use an NTSC camera
with a frame rate of 30 Hz, the maximum delay can be 33 milliseconds.

Of course, such a delay is not acceptable in an application that is to inspect parts at a high rate. The solution is to
use cameras that allow a so-called asynchronous reset. This means that upon a signal from the frame grabber, the
camera resets the image chip and (almost) immediately starts to expose it. Typically, such a camera does not grab
images continuously but only on demand.

An example timing diagram is shown in figure 5.2. In contrast to figure 5.1, the image delay is (almost) zero.
Furthermore, because the application now specifies when images are to be grabbed, all images can be processed
successfully; however, the achieved frame rate still includes the processing time and therefore may be too low for
some machine vision applications.

5.1.3 Volatile Grabbing

As shown in figure 5.1 on page 22, after the image has been transferred into the computer memory, the HALCON
acquisition interface needs some time to create a corresponding HALCON image which is then returned in the
output parameter Image of grab_image. Most of this time is needed to copy the image data from the buffer which
is the destination of the DMA into a newly allocated area.

You can switch off the copying by using the so-called volatile grabbing, which can be enabled via the operator
set_framegrabber_param (parameter ’volatile’):

set_framegrabber_param (AcqHandle, 'volatile', 'enable')

G
ra

bb
in

g

A-24 The Various Modes of Grabbing Images

Then, the time needed by the image acquisition interface to create the HALCON image is significantly reduced as
visualized in figure 5.2. Note that usually volatile grabbing is only supported for gray value images!

The drawback of volatile grabbing is that grabbed images are overwritten by subsequent grabs. To be more exact,
the overwriting depends on the number of image buffers allocated by the acquisition interface or SDK. Typically, at
least two buffers exist; therefore, you can safely process an image even if the next image is already being grabbed
as in figure 5.4 on page 26. Some acquisition interfaces allow to use more than two buffers, and even to select their
number dynamically via set_framegrabber_param (parameter ’num_buffers’).

Please note that volatile grabbing is not really volatile within HDevelop, i.e., images are copied nevertheless,!
otherwise there would be scenarios when HDevelop would crash.

Thus, to experiment with volatile grabbing using the HDevelop example program %HALCONEXAMPLES%\

solution_guide\image_acquisition\volatile_grabbing.hdev, you must export it to a programming lan-
guage or use HDevEngine.

After grabbing a first image and displaying it via

grab_image (FirstImage, AcqHandle)

dev_open_window (0, 0, Width / 2, Height / 2, 'black', FirstWindow)

dev_display (FirstImage)

change the scene and grab a second image which is displayed in an individual window:

grab_image (SecondImage, AcqHandle)

dev_open_window (0, Width / 2 + 8, Width / 2, Height / 2, 'black', \

SecondWindow)

dev_display (SecondImage)

Now, images are grabbed in a loop and displayed in a third window. The two other images are also displayed
each time. If you change the scene before each grab you can see how the first two images are overwritten in turn,
depending on the number of buffers.

dev_open_window (Height / 2 + 66, Width / 4 + 4, Width / 2, Height / 2, \

'black', ThirdWindow)

for i := 1 to 10 by 1

grab_image (CurrentImage, AcqHandle)

dev_set_window (ThirdWindow)

dev_display (CurrentImage)

dev_set_window (FirstWindow)

dev_display (FirstImage)

dev_set_window (SecondWindow)

dev_display (SecondImage)

endfor

5.1.4 Real-Time Grabbing Using grab_image_async

The main problem with the timing using grab_image is that the two processes of image grabbing and image
processing run sequentially, i.e., one after the other. This means that the time needed for processing the image is
included in the resulting frame rate, with the effect that the frame rate provided by the camera cannot be reached
by definition.

This problem can be solved by using the operator grab_image_async. Here, the two processes are decoupled
and can run asynchronously, i.e., an image can be processed while the next image is already being grabbed.!
Figure 5.3 shows a corresponding timing diagram: The first call to grab_image_async is processed similar to
grab_image (compare figure 5.1 on page 22). The difference becomes apparent after the transfer of the image
into computer memory: Almost immediately after receiving the image, the acquisition interface automatically
commands the frame grabber to acquire a new image. Thus, the next image is grabbed while the application
processes the previous image. After the processing, the application calls grab_image_async again, which waits
until the already running image acquisition is finished. Thus, the full frame rate is now reached. Note that some
frame grabbers fail to reach the full frame rate even with grab_image_async; section 5.1.5 on page 26 shows
how to solve this problem.

5.1 Real-Time Image Acquisition A-25

frame rate
original

frame rate
original

frame rate
original

delay
image

create
HImage

"negative"
image
delay

frame rate
processing

expose expose expose expose

application

IAI & SDK

frame

grabber

camera t

t

t

t

t

t
software

wait for
vsync

wait for
image

Grab

grab_image_async

wait for
vsync

wait for
vsync

digitize digitize digitize

(DMA)

transfer

(analog)

transfer

create
HImage

create
HImage

grab_image_async grab_image_async

wait for
image

wait for
image

process process process

Grab Grab Grab

Figure 5.3: Grabbing and processing in parallel using grab_image_async.

In the HDevelop example program %HALCONEXAMPLES%\solution_guide\image_acquisition\

real_time_grabbing.hdev, which was already described in section 5.1.1 on page 21, the reached frame
rate for asynchronous processing is determined as follows:

grab_image (BackgroundImage, AcqHandle)

count_seconds (Seconds1)

for i := 1 to 20 by 1

grab_image_async (Image, AcqHandle, -1)

sub_image (BackgroundImage, Image, DifferenceImage, 1, 128)

endfor

count_seconds (Seconds2)

TimeGrabImageAsync := (Seconds2 - Seconds1) / 20

FrameRateGrabImageAsync := 1 / TimeGrabImageAsync

As can be seen in figure 5.3, the first call to grab_image_async has a slightly different effect than the following
ones, as it also triggers the first grab command to the frame grabber. As an alternative, you can use the operator
grab_image_start which just triggers the grab command; then, the first call to grab_image_async behaves
as the other ones. This is visualized, e.g., in figure 5.4; as you can see, the advantage of this method is that the
application can perform some processing before calling grab_image_async.

Note that you can use grab_image_start in combination with the special parameter
’start_async_after_grab_async’ to specify exactly when a grab command is triggered during asyn-
chronous grabbing. In section 5.3.1 on page 29, this is used for asynchronous grabbing with multiple cameras.

In the example, the processing was assumed to be faster than the acquisition. If this is not the case, the image will
already be ready when the next call to grab_image_async arrives. In this case, you can specify how “old” the
image is allowed to be using the parameter MaxDelay. Please refer to section 5.1.7 on page 27 for details.

Please note that when using grab_image_async it is not obvious anymore which image is returned by the operator
call, because the call is decoupled from the command to the frame grabber! In contrast to grab_image, which
always triggers the acquisition of a new image, grab_image_async typically returns an image which has been
exposed before the operator was called, i.e., the image delay is negative (see figure 5.3)! Keep this effect in mind

G
ra

bb
in

g

A-26 The Various Modes of Grabbing Images

when changing parameters dynamically; contrary to intuition, the change will not affect the image returned by the
next call of grab_image_async but by the following ones! Another problem appears when switching dynamically
between cameras (see section 5.3.1 on page 29).

5.1.5 Continuous Grabbing

For some frame grabbers, grab_image_async fails to reach the frame rate because the grab command to the
frame grabber comes too late, i.e., after the camera has already started to transfer the next image (see figure 5.4a).

frame rate
original

frame rate
original

frame rate
original

frame rate
processing

create
HImage

create
HImage

frame rate
processing

expose expose expose expose

a)

b)

IAI & SDK

application

IAI & SDK

application

frame

grabber

camera

frame

grabber

t

t

t

t

t

t

t

t

t

t

t

software

software

wait for
vsync

wait for
image

Grab

digitize digitize
wait for
vsync

(DMA)

transfer

(analog)

transfer

wait for
image

digitize digitize

wait for
image

digitize

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
image

create
HImage

grab_image_async

create
HImage

grab_image_async grab_image_async

create
HImage

process process

grab_image_async
etc

grab_image_async
etc

process process process

Grab

Grab

Grab

Grab Grab Grab

grab_image_start

set ’continuous_grabbing’

grab_image_start

Figure 5.4: a) grab_image_async fails to reach frame rate; b) problem solved using continuous grabbing.

5.1 Real-Time Image Acquisition A-27

As a solution to this problem, some acquisition interfaces provide the so-called continuous grabbing mode, which
can be enabled only via the operator set_framegrabber_param (parameter ’continuous_grabbing’):

set_framegrabber_param (AcqHandle, 'continuous_grabbing', 'enable')

In this mode, the frame grabber reads images from a free-running camera continuously and transfers them into
computer memory as depicted in figure 5.4b. Thus, the frame rate is reached. If your frame grabber supports
continuous grabbing, you can test this effect in the example program %HALCONEXAMPLES%\solution_guide\

image_acquisition\real_time_grabbing.hdev, which was already described in the previous sections; the
program measures the achievable frame rate for grab_image_async without and with continuous grabbing.

We recommend to use continuous grabbing only if you want to process every image; otherwise, images are trans-
mitted over the PCI bus unnecessarily, thereby perhaps blocking other PCI transfers.

Note that some acquisition interfaces provide additional functionality in the continuous grabbing mode. Please
refer to the corresponding documentation for more information.

5.1.6 Using grab_image_async Together With Asynchronously Resettable
Cameras

As described in section 5.1.2 on page 23, you can acquire images without delay by using an asynchronously reset-
table camera. Figure 5.5 shows the resulting timing when using such a camera together with grab_image_async.
When comparing the diagram to the one in figure 5.2 on page 23, you can see that a higher frame rate can now be
reached, because the processing time is not included anymore.

delay
image

= 0

create
HImage

frame rate
original

frame rate
processing

expose expose

IAI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitize
wait for
vsync

wait for
image

digitize

create
HImage

Expose

(DMA)

transfer

(analog)

transfer

process process

Grab

wait for
image

Grab

grab_image_async

wait for
vsyncExpose

Grab

grab_image_async

Figure 5.5: Using an asynchronously resettable camera together with grab_image_async (configuration as in fig-
ure 5.2 on page 23.

5.1.7 Specifying a Maximum Delay

In contrast to grab_image, the operator grab_image_async has an additional parameter MaxDelay, which lets
you specify how “old” an already grabbed image may be in order to be accepted. Figure 5.6 visualizes the effect

G
ra

bb
in

g

A-28 The Various Modes of Grabbing Images

create
HImage

create
HImage

exposeexpose expose expose

IAI & SDK

application

frame

grabber

camera t

t

t

t

t

t
software

digitizedigitize digitize digitize

wait for
image

wait for
image

(DMA)

transfer

(analog)

transfer

> MaxDelay? NO > MaxDelay? YES

process process process process

grab_image_async

GrabGrabGrabGrab

Figure 5.6: Specifying a maximum delay for grab_image_async (using continuous grabbing).

of this parameter. There are two cases to distinguish: If the call to grab_image_async arrives before the next
image has been grabbed (first call in the example), the parameter has no effect. However, if an image has been
grabbed already (second and third call in the example), the elapsed time since the last grab command to the frame
grabber is compared to MaxDelay. If it is smaller (second call in the example), the image is accepted; otherwise
(third call), a new image is grabbed.

Please note that the delay is not measured starting from the moment the image is exposed, as you might perhaps
expect! Currently, only a few device SDKs provide this information; therefore, the last grab command from the
interface to the frame grabber is used as the starting point instead.

Note that the parameter MaxDelay in the operator grab_image_async has a completely different meaning than
the additional parameter ’grab_timeout’: Using ’grab_timeout’ you can set a timeout for the acquisition
process, i.e., the grab operators return after a certain time period with an appropriate error.

5.2 Using an External Trigger

In the previous section, the software performing the machine vision task decided when to acquire an image (soft-
ware trigger). In industrial applications, however, the moment for image acquisition is typically specified exter-
nally by the process itself, e.g., in form of a hardware trigger signal indicating the presence of an object to be
inspected. Most image acquisition devices are therefore equipped with at least one input line for such signals,
which are called external triggers.

From HALCON’s point of view, external triggers are dealt with by the image acquisition device, the only thing
to do is to inform the device to use the trigger. You can do this simply by setting the parameter ExternalTrig-
ger of open_framegrabber to ’true’. Some acquisition interfaces also allow to enable or disable the trigger
dynamically using the operator set_framegrabber_param (parameter ’external_trigger’).

Figure 5.7a shows the timing diagram when using an external trigger together with grab_image and a free-running
camera. After the call to grab_image, the image acquisition device waits for the trigger signal. When it appears,
the procedure described in the previous section follows: The device waits for the next image, digitizes it, and

5.3 Acquiring Images From Multiple Cameras A-29

transfers it into computer memory; then, the HALCON acquisition interface transforms it into a HALCON image
and returns the control to the application which processes the image and then calls grab_image again, which
causes the image acquisition device to wait for the next trigger signal.

The (bad) example in figure 5.7a was chosen on purpose to show an unsuitable configuration for using an external
trigger: First of all, because of the free-running camera there is a non-deterministic delay between the arrival of
the trigger signal and the exposure of the image, which may mean that the object to be inspected is not completely
visible anymore. Secondly, because grab_image is used, trigger signals which arrive while the application is
processing an image are lost.

Both problems can easily be solved by using an asynchronously resettable camera together with the operator
grab_image_async as depicted in figure 5.7b.

The C++ example program %HALCONEXAMPLES%\examples\solution_guide\image_acquisition\cpp\

error_handling_timeout.cpp shows how simple it is to use an external trigger: The connection is opened
with ExternalTrigger set to ’true’:

HFramegrabber acqdevice;

acqdevice.OpenFramegrabber(acqname, 1, 1, 0, 0, 0, 0, "default", -1,

"gray", -1, "true", "default", "default", -1, -1);

Then, images are grabbed:

HImage image;

do

{

image = acqdevice.GrabImageAsync(-1);

} while (button == 0);

The example contains a customized error handler which checks whether there is an external trigger; this part is
described in detail in section 6.4.3 on page 37.

5.2.1 Special Parameters for External Triggers

Most image acquisition interfaces allow to further configure the use of external triggering via the operator
set_framegrabber_param. As mentioned in section 4.2 on page 18, some interfaces allow to enable and
disable the external trigger dynamically via the parameter ’external_trigger’. Another useful parameter is
’grab_timeout’, which sets a timeout for the acquisition process (some interfaces provide an additional param-
eter ’trigger_timeout’ just for triggered grabbing). Without such a timeout, the application would hang if
for some reason no trigger signal arrives. In contrast, if a timeout is specified, the operators grab_image and
grab_image_async only wait the specified time and then return an error code or raise an exception, depending
on the programming language used. Section 6.4 on page 35 shows how to handle such errors.

Other parameters allow to further specify the form of the trigger signal (’trigger_signal’), e.g., whether the
falling or the rising edge is used as the trigger, select between multiple trigger input lines, or even filter trigger
signals. Some acquisition interfaces also allow to influence the exposure via the trigger signal.

5.3 Acquiring Images From Multiple Cameras

The timing diagrams shown in the previous sections depicted the case of a single camera. Below we discuss
some issues which arise when acquiring images from multiple cameras (see section 3.2 on page 12 for possible
configurations).

5.3.1 Dynamic Port Switching and Asynchronous Grabbing

If you switch dynamically between multiple cameras connected to a single board as described in section 3.2.4 on
page 13, you must be careful when using grab_image_async: By default, the acquisition interface commands the

G
ra

bb
in

g

A-30 The Various Modes of Grabbing Images

delay
image

delay
image

= 0

create
HImage

create
HImage

create
HImage

expose

delay
image

= 0

delay
image

= 0

exposeexpose expose expose

IAI & SDK

application

expose

IAI & SDK

application

a)

b)

expose

trigger

frame

grabber

camera

frame

grabber

camera

trigger

t

t

t

t

t

t
software

t

t

t

t

t

t
software

wait for
trigger

wait for
vsync

wait for
trigger

wait for
image

(DMA)

transfer

(analog)

transfer

wait for
trigger

wait for
vsync

(DMA)

transfer

(analog)

transfer

Trigger

Trigger

digitize

process

Trigger Trigger

wait for
image

digitize

wait for
image

process

Trigger

process

Trigger

wait for
image

wait for
vsync

digitize

Grab

wait for
vsync

digitize

Trigger

wait for
image

grab_image_async

grab_image

Grab

Grab

Expose

grab_image

Grab

ExposeExpose Expose

etc

grab_image_start
grab_image_async grab_image_async

GrabGrab

Figure 5.7: Using an external trigger together with: a) free-running camera and grab_image; b) asynchronously
resettable camera and grab_image_async.

frame grabber board to grab the next image automatically after it received the current image — but before the next
call of grab_image_async! If you switched to another camera before this call, the frame grabber might already
be busy grabbing an image from the first camera.

Some acquisition interfaces solve this problem by providing the parameter ’start_async_after_grab_async’
for the operator set_framegrabber_param which allows to disable the automatic grab command to the frame
grabber board.

set_framegrabber_param (AcqHandle, 'start_async_after_grab_async', \

'disable')

5.3 Acquiring Images From Multiple Cameras A-31

Now, all grab commands must be issued explicitly with the operator grab_image_start. The following code
shows how to switch between cameras in a loop:

* switch to camera 0 and grab a first image

set_framegrabber_param (AcqHandle, 'port', Port0)

grab_image_start (AcqHandle, -1)

dev_set_window (WindowHandle0)

grab_image_async (Image0, AcqHandle, -1)

dev_display (Image0)

while (1)

* switch to camera 1 and start a new grab

set_framegrabber_param (AcqHandle, 'port', Port1)

grab_image_start (AcqHandle, -1)

* meanwhile, process image 0

* then get image from camera 1

dev_set_window (WindowHandle1)

grab_image_async (Image1, AcqHandle, -1)

dev_display (Image1)

* switch to camera 0 and start a new grab

set_framegrabber_param (AcqHandle, 'port', Port0)

grab_image_start (AcqHandle, -1)

* meanwhile, process image 1

* then get image from camera 0

dev_set_window (WindowHandle0)

grab_image_async (Image0, AcqHandle, -1)

dev_display (Image0)

endwhile

5.3.2 Simultaneous Grabbing

Some image acquisition interfaces provide special functionality to grab images simultaneously from multiple (syn-
chronized) cameras. Typically, the cameras are connected to a single frame grabber board; some interfaces also
allow to grab simultaneously from cameras connected to multiple boards. As described in section 3.2.5 on page
14, the images are grabbed by a single call to grab_image or grab_image_async, which return them in form of
a multi-channel image. Depending on the acquisition interface, it may be necessary to switch on the simultaneous
grabbing via the operator set_framegrabber_param.

Please keep in mind that even if a HALCON acquisition interface supports simultaneous grabbing, this might not
be true for every frame grabber board the interface supports! In order to grab multiple images simultaneously,
a frame grabber board must be equipped with multiple “grabbing units”; for example, an analog frame grabber
board must be equipped with multiple A/D converters. Please check this in the documentation of your frame
grabber board.

Even if a HALCON acquisition interface does not provide the special simultaneous grabbing mode, you can realize
a similar behavior “manually”, e.g., by connecting each (asynchronously resettable) camera to a single frame
grabber board and then using a common external trigger signal to synchronize the grabbing.

G
ra

bb
in

g

A-32 The Various Modes of Grabbing Images

Miscellaneous A-33

Chapter 6

Miscellaneous

6.1 Acquiring Images From Standardized Image Acquisition De-
vices

Different committees have developed standards for image acquisition interfaces. HALCON supports several of
these standards and provides the corresponding interfaces. In particular the standards GenICam, GigE Vision,
Video4Linux, DCAM, DirectFile, DirectShow, and Twain are supported. A standardized image acquisition in-
terface is suitable for different image acquisition devices that do not necessarily have the same set of parameters
to adjust during the image acquisition. For some interfaces, e.g, the 1394IIDC interface that follows the DCAM
standard, a fixed set of parameters is available and it can be queried for a specific device, which of these parame-
ters are supported by the device. For other interfaces arbitrary parameters are allowed. Such interfaces are called
“generic”. Examples for generic interfaces are the GenICamTL interface, which follows the GenTL module of
the GenICam standard, and the GigEVision interface that follows the GigE Vision standard. As the parameters
for a generic interface may be arbitrary, the information about the device-specific parameters is not provided with
the description of the interface but must be queried from the device. For example, if the interface follows the
GenICam standard, the needed information is available in form of an xml file that is typically stored on the de-
vice. When calling open_framegrabber, the information is read automatically. The individual parameter names
that are available for the specific device can then be queried with the operator get_framegrabber_param setting
Param to ’available_param_names’. For the returned parameter names further information can be queried. For
example, you can query the following parameter values for each parameter name (replace ’name’ by the specific
parameter name):

’name_range’: range for the allowed numerical values, in particular, the minimum
allowed value, the maximum allowed value, the increment value, and
the default value.

’name_values’: available string values.

’name_description’: short description of the parameter, i.e., a kind of a tool tip.

Additionally, parameter values can be queried that are supported only for some interfaces. The following parameter
values are very common and are used, e.g., by the GenICamTL and the GigEVision interface:

’name_access’: access type, i.e., information to which degree the parameter can be
accessed, i.e., can it only be read or also be written?

’name_category’: information to which thematic category of parameters the parameter
belongs.

’name_visibility’: information to which group of users the parameter is helpful, i.e.,
should a beginner try to adjust it, or is it more suitable for ’experts’
or even only for ’gurus’?

The HDevelop example program gigevision_parameters.hdev shows how to query parameters of a GigEVi-
sion interface. In particular, after opening the connection to the specific device with open_framegrabber, the
tuple of available device-specific parameter names is queried using the parameter ’available_param_names’

M
is

ce
lla

ne
ou

s

A-34 Miscellaneous

within get_framegrabber_param. Then, for each of the available parameters, the access type is determined. If
the parameter is readable, its value as well as the range for the numerical values or the available string values are
queried.

open_framegrabber (InterfaceName, 0, 0, 0, 0, 0, 0, 'default', -1, \

'default', GenericParam, 'false', 'default', Device, 0, \

-1, AcqHandle)

get_framegrabber_param (AcqHandle, 'available_param_names', ParameterValues)

for Index := 0 to |ParameterValues| - 1 by 1

get_framegrabber_param (AcqHandle, ParameterValues[Index] + '_access', \

ParameterAccess)

* If the parameter is readable, query further information

get_framegrabber_param (AcqHandle, ParameterValues[Index], ParameterValue)

* Note that only one out of the two queries for '_range' and '_values'
* is available for each parameter

get_framegrabber_param (AcqHandle, ParameterValues[Index] + '_range', \

ParameterValuesOut)

get_framegrabber_param (AcqHandle, ParameterValues[Index] + '_values', \

ParameterValuesOut)

endfor

close_framegrabber (AcqHandle)

Note that for generic image acquisition interfaces different types of parameters are used: the parameters specific
for the image acquisition device, the parameters provided by HALCON, and the parameters provided by the driver.
The parameters provided by HALCON are explained with the description of the interface. All other parameters are
queried with get_framegrabber_param setting Param to ’available_param_names’ as is described above.

6.2 Acquiring Images From Unsupported Image Acquisition De-
vices

If you want to use an image acquisition device that is currently not supported by HALCON, i.e., for which no
HALCON interface exists, there exist two principal ways: First, you can create your own HALCON acquisition
interface. A description how to create and integrate an image acquisition interface as well as a template source
code that can be used as the basis of an integration can be downloaded from MVTec’s web server under http:
//www.mvtec.com/products/interfaces.

As a very easy to use alternative, you can pass externally created images, i.e., the raw image matrix, to
HALCON using the operators gen_image1, gen_image3, gen_image1_extern, or gen_image3_extern,
which create a corresponding HALCON image. The main difference between the operators gen_image1 and
gen_image1_extern and their variants for three-channel images is that the former copies the image matrix when
creating the HALCON image, whereas the latter doesn’t, which is useful if you want to realize volatile grabbing
as described in section 5.1.3 on page 23.

The C example program %HALCONEXAMPLES%\examples\solution_guide\image_acquisition\c\

use_extern_image.c shows how to use the operator gen_image1_extern to pass standard gray value images
to HALCON. In this case, the image matrix consists of 8 bit pixels (bytes), which can be represented by the data
type unsigned char. At the beginning, the program calls a procedure which allocates memory for the images to
be “grabbed”; in a real application this corresponds to the image buffer(s) used by the image acquisition device
SDK.

unsigned char *image_matrix_ptr;

Hlong width, height;

InitializeBuffer(&image_matrix_ptr, &width, &height);

The example program “simulates” the grabbing of images with a procedure which reads images from an image
sequence and copies them into the image buffer. Then, the content of the image buffer is transformed into a
HALCON image (type byte) via gen_image1_extern. The parameter ClearProc is set to 0 to signal that the
program itself takes care of freeing the memory. The created HALCON image is then displayed. The loop can be
exited by clicking into the HALCON window with any mouse button.

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

6.3 Grabbing Image Arrays and Preprocessed Image Data A-35

Hobject image;

long window_id;

open_window (0, 0, width, height, 0, "visible", "", (Hlong*)&window_id);

while (!ButtonPressed(window_id))

{

MyGrabImage((const unsigned char **) &image_matrix_ptr);

gen_image1_extern(&image, "byte", (Hlong)width, (Hlong)height,

(long) image_matrix_ptr, (long) 0);

disp_obj(image, window_id);

}

If your image acquisition device supplies images with more than 8 bit pixels, you must adapt both the data type
for the image matrix and the type of the created HALCON image (parameter Type of gen_image1_extern). In
case of color images HALCON expects the image data in form of three separate image matrices. Correspondingly,
you can create a HALCON image by calling the operators gen_image3 or gen_image3_extern with the three
pointers to the matrices. Please refer to appendix A on page 43 for more information about HALCON images in
general.

6.3 Grabbing Image Arrays and Preprocessed Image Data

The previous sections described in detail how to acquire images using grab_image or grab_image_async. With
these operators images can be grabbed and, if an image consists of several channels, the image is grabbed as a
multi-channel image (see also appendix A.1 on page 43). For the typical color image, this approach is suited
very well, as multi-channel images can be further processed conveniently by many HALCON operators . But
sometimes, e.g., if the grabbed data describes 3D data rather than a color image, the images are needed in an
array instead of a multi-channel image. Then, you can either grab the image as a multi-channel image, access
the individual channels with the operator access_channel, and store the images of the individual channels in
an array. Or, which is more comfortable, you can call the operator grab_data or grab_data_async instead.
Both operators immediatley return the grabbed images in an array. Furthermore, they provide the possibility to
additionally grab preprocessed image data like regions, contours, or control data.

Note that grab_data and grab_data_async are not available for all image acquisition interfaces. Typically,
they are supported by those interfaces that acquire 3D data or that allow a preprocessing in the camera or the
framegrabber. For example, the HDevelop example program swissranger_simple.hdev shows how to use
grab_data to access an array of images from a SwissRanger interface that contains amongst others the X, Y, and
Z images needed to build a 3D object model.

for i := 1 to 100 by 1

grab_data (ImageData, Region, Contours, AcqHandle, Data)

count_obj (ImageData, NumImageData)

select_obj (ImageData, ImageX, 1)

select_obj (ImageData, ImageY, 2)

select_obj (ImageData, ImageZ, 3)

select_obj (ImageData, DistanceImage, 4)

select_obj (ImageData, AmplitudeImage, 5)

if (NumImageData > 5)

select_obj (ImageData, ConfidenceImage, 6)

endif

endfor

xyz_to_object_model_3d (ImageX, ImageY, ImageZ, ObjectModel3DID)

6.4 Error Handling

Just as the HALCON acquisition interfaces encapsulate the communication with an image acquisition device, they
also encapsulate occurring errors within the HALCON error handling mechanism. How to catch and react to these

M
is

ce
lla

ne
ou

s

A-36 Miscellaneous

Figure 6.1: Popup dialog in HDevelop signaling a timeout.

errors is described below for HDevelop programs and also for programs using HALCON’s programming language
interfaces.

Some HALCON acquisition interfaces provide special parameters for set_framegrabber_param which are re-
lated to error handling. The most commonly used one is the parameter ’grab_timeout’ which specifies when
the image acquisition device should quit waiting for an image. The examples described in the following sections
show how to handle the corresponding HALCON error.

Note that all example programs enable the signaling of low level errors via the operator set_system, e.g., in
HDevelop syntax via

set_system ('do_low_error', 'true')

In this mode, low level errors occurring in the image acquisition device SDK (or in the HALCON acquisition
interface) are signaled by a message box.

6.4.1 Error Handling in HDevelop

The HDevelop example %HALCONEXAMPLES%\solution_guide\image_acquisition\

error_handling_timeout.hdev shows how to handle HALCON errors in an HDevelop program. To
“provoke” an error, open_framegrabber is called with ExternalTrigger = ’true’. If there is no trigger, a
call to grab_image results in a timeout; HDevelop reacts to this error with the popup dialog shown in figure 6.1
(provided that the display of low level error message boxes is activated via the Preferences dialog, otherwise
the message is only displayed in the Output Console of the Window menu) and stops the execution of the
program.

open_framegrabber (AcqName, 1, 1, 0, 0, 0, 0, 'default', -1, 'default', -1, \

'true', 'default', 'default', -1, -1, AcqHandle)

set_framegrabber_param (AcqHandle, 'grab_timeout', 2000)

grab_image (Image, AcqHandle)

HALCON lets you modify the reaction to an error with the operator set_check (in HDevelop: dev_set_check).
If you set it to ’˜give_error’, the program does not stop in case of an error but only stores its cause in form of
an error code. To access this error code in HDevelop, you must define a corresponding variable using the operator
dev_error_var. Note that this variable is updated after each operator call; to check the result of a single operator
we therefore recommend to switch back to the standard error handling mode directly after the operator call as in
the following lines:

dev_error_var (ErrorNum, 1)

dev_set_check ('~give_error')
grab_image (Image, AcqHandle)

dev_error_var (ErrorNum, 0)

dev_set_check ('give_error')

To check whether a timeout occurred, you compare the error variable with the code signaling a timeout (5322); a
list of error codes can be found in the Extension Package Programmer’s Manual, appendix A on page 105. In the ex-
ample, the timeout is handled by disabling the external trigger mode via the operator set_framegrabber_param
(parameter ’external_trigger’). Then, the call to grab_image is tested again.

6.4 Error Handling A-37

if (ErrorNum == 5322)

set_framegrabber_param (AcqHandle, 'external_trigger', 'false')
dev_error_var (ErrorNum, 1)

dev_set_check ('~give_error')
grab_image (Image, AcqHandle)

dev_error_var (ErrorNum, 0)

dev_set_check ('give_error')
endif

Now, the error variable should contain the value 2 signaling that the operator call succeeded; for this value, HDe-
velop provides the constant H_MSG_TRUE. If you get another error code, the program accesses the corresponding
error text using the operator get_error_text.

if (ErrorNum != H_MSG_TRUE)

get_error_text (ErrorNum, ErrorText)

endif

If your image acquisition interface does not provide the parameter ’external_trigger’, you can realize a similar
behavior by closing the connection and then opening it again with ExternalTrigger set to ’false’.

6.4.2 Error Handling Using HALCON/C

The mechanism for error handling in a program based on HALCON/C is similar to the one in HDevelop; in fact, it
is even simpler, because each operator automatically returns its error code. However, if a HALCON error occurs
in a C program, the default error handling mode causes the program to abort.

The C example program %HALCONEXAMPLES%\examples\solution_guide\image_acquisition\c\

error_handling_timeout.c performs the same task as the HDevelop program in the previous section; if the
call to grab_image succeeds, the program grabs and displays images in a loop, which can be exited by clicking
into the window. The following lines show how to test whether a timeout occurred:

set_check ("~give_error");

error_num = grab_image (&image, acqhandle);

set_check ("give_error");

switch (error_num)

{

case H_ERR_FGTIMEOUT:

As you see, in a C program you can use predefined constants for the error codes (see the Extension Package
Programmer’s Manual, appendix A on page 105, for a list of image acquisition error codes and their corresponding
constants).

6.4.3 Error Handling Using HALCON/C++

If your application is based on HALCON/C++, an exception handling mechanism is provided based on the class
HException, which is described in the Programmer’s Guide, section 5.3 on page 42. Whenever a HALCON error
occurs, an instance of this class is created.

The main idea is that you can specify a procedure which is then called automatically with the created instance of
HException as a parameter. How to use this mechanism is explained in the C++ example program %HALCONEX-

AMPLES%\examples\solution_guide\image_acquisition\cpp\error_handling_timeout.cpp, which
performs the same task as the examples in the previous sections.

In the example program %HALCONEXAMPLES%\examples\solution_guide\image_acquisition\cpp\

error_handling_timeout.cpp, the procedure which is to be called upon error is very simple: It just raises a
standard C++ exception with the instance of HException as a parameter.

You react to a timeout with the following lines:

M
is

ce
lla

ne
ou

s

A-38 Miscellaneous

try

{

image = acqdevice.GrabImage();

}

catch (HException &except)

{

if (except.ErrorCode() == H_ERR_FGTIMEOUT)

{

acqdevice.SetFramegrabberParam("external_trigger", "false");

As already noted, if your image acquisition interface does not provide the parameter ’external_trigger’, you
can realize a similar behavior by closing the connection and then opening it again with ExternalTrigger set to
’false’:

if (except.err == H_ERR_FGTIMEOUT)

{

acqdevice.OpenFramegrabber(acqname, 1, 1, 0, 0, 0, 0, "default", -1,

"gray", -1, "false", "default", "default", -1,

-1);

Note that when calling OpenFramegrabber via the class HFramegrabber as above, the operator checks whether it
is called with an already opened connection and automatically closes it before opening it with the new parameters.

6.4.4 Error Handling Using HALCON/.NET

For error handling with HALCON/.NET (e.g., in C# or Visual Basic.NET applications) please refer to the Pro-
grammer’s Guide, section 11.4 on page 79.

6.5 Callback Functions

With callbacks HALCON applications can be notified of occurrences that are defined by different callback types,
e.g., if the exposure has finished or the transfer between camera and computer is complete. Callbacks are available!
only for specific image acquisition interfaces or devices and are not available for HDevelop programs but
only for the programming languages supported by HALCON!

In practice, first a user-specific callback function must be written that will be called at the occurrence defined by
the specific callback type. Note that the function must be written in the selected programming language, i.e., if
you use HALCON/C++, the callback function must be implemented in HALCON/C++, too. The function must
provide the following parameters: the handle to the image acquisition device, a pointer to interface-specific context
data, and a pointer to user-specific context data. The specific signature is described in detail with the operator
set_framegrabber_callback. This operator is then used to register the callback function in HALCON. There,
the handle to the image acquisition interface and the pointer to the optional user-specific data must be specified.
Additionally, the specific callback type must be set. Note that not all image acquisition interfaces support callbacks
and the callback types vary between the interfaces that do support them. To check if callbacks are supported by your
interface and to query the specific callback types that are available for it, you can call get_framegrabber_param
setting the parameter Param to ’available_callback_types’. With get_framegrabber_callback you can
query the callback function and the pointer to the user-specific data set for a specific callback type and image
acquisition interface.

When implementing the user-specific callback function, you should take care that its execution time is as short
as possible, because, if the execution of the user-specific callback function takes too long, the system will slow
down or the occurrence of further user-specific callbacks might be lost. Which case applies depends on the way
the interface internally handles the synchronization of the callback process. In particular, the synchronization
can be based on internally used callbacks or on a mechanism that uses so-called “events”. In the first case, the
user-specific callback function is activated by an internally used callback function that waits for the user-specific
callback function to finish before the next callback type is processed. This process may slow down the frame rate
if the user-specific callback function is very complex. In the second case, the interfaces use “events” instead of an
internally used callback function to activate the user-specific callback function. Then, the process does not wait

6.6 Line Scan Cameras A-39

for the user-specific callback function to finish before it proceeds. Instead, it waits a fixed time after activating
the user-specific callback function and then proceeds automatically. This waiting time cannot be controlled by the
user and thus, it might happen for very complex user-specific callback functions that by the time an event tries to
activate the user-specific callback function, the function is still busy and the event is lost.

6.6 Line Scan Cameras

From the point of view of HALCON there is no difference between area and line scan cameras: Both acquire
images of a certain width and height; whether the height is 1, i.e., a single line, or larger does not matter. In fact,
in many line scan applications the image acquisition device combines multiple acquired lines to form a so-called
page which further lessens the difference between the two camera types.

The main problem is therefore whether your frame grabber supports line scan cameras. If yes, you can acquire
images from it via HALCON exactly as from an area scan camera. With the parameter ImageHeight of the
operator open_framegrabber you can sometimes specify the height of the page; typically, this information is set
in the camera configuration file. Some HALCON acquisition interfaces allow to further configure the acquisition
mode via the operator set_framegrabber_param.

The images acquired from a line scan camera can then be processed just like images from area scan cameras.
However, line scan images often pose an additional problem: The objects to inspect may be spread over multiple
images (pages). To solve this problem, HALCON provides special operators: tile_images allows to merge
images into a larger image, merge_regions_line_scan and merge_cont_line_scan_xld allow to merge the
(intermediate) processing results of subsequent images.

How to use these operators is explained in the HDevelop example program %HALCONEXAMPLES%\

solution_guide\image_acquisition\line_scan.hdev. The program is based on an image file sequence
which is read using the HALCON virtual acquisition interface File; the task is to extract paper clips and calculate
their orientation. Furthermore, the gray values in a rectangle surrounding each clip are determined.

An important parameter for the merging is over how many images an object can be spread. In the example, a clip
can be spread over 4 images:

MaxImagesRegions := 4

The continuous processing is realized by a simple loop: At each iteration, a new image is grabbed, and the regions
forming candidates for the clips are extracted using thresholding.

while (1)

grab_image (Image, AcqHandle)

threshold (Image, CurrRegions, 0, 80)

The current regions are then merged with ones extracted in the previous image using the operator
merge_regions_line_scan. As a result, two sets of regions are returned: The parameter CurrMergedRe-

gions contains the current regions, possibly extended by fitting parts of the previously extracted regions, whereas
the parameter PrevMergedRegions contains the rest of the previous regions.

merge_regions_line_scan (CurrRegions, PrevRegions, CurrMergedRegions, \

PrevMergedRegions, ImageHeight, 'top', \

MaxImagesRegions)

connection (PrevMergedRegions, ClipCandidates)

select_shape (ClipCandidates, FinishedClips, 'area', 'and', 4500, 7000)

The regions in PrevMergedRegions are “finished”; from them, the program selects the clips via their area and
further processes them later, e.g., determines their position and orientation. The regions in CurrMergedRegions

are renamed and now form the previous regions for the next iteration.

copy_obj (CurrMergedRegions, PrevRegions, 1, -1)

endwhile

M
is

ce
lla

ne
ou

s

A-40 Miscellaneous

a)

b)

c)

4

3
2

1

5 6

3

3

4

1

2

1

2

Figure 6.2: Merging regions extracted from subsequent line scan images: state after a) 2, b) 3, c) 4 images (large
coordinate system: tiled image; small coordinate systems: current image or most recent image).

Note that the operator copy_obj does not copy the regions themselves but only the corresponding HALCON
objects, which can be thought of as references to the actual region data.

Before we show how to merge the images let’s take a look at figure 6.2, which visualizes the whole process: After
the first two images CurrMergedRegions contains three clip parts; for the first one a previously extracted region
was merged. Note that the regions are described in the coordinate frame of the current image; this means that the
merged part of clip no. 1 has negative coordinates.

In the next iteration (figure 6.2b), further clip parts are merged, but no clip is finished yet. Note that the coordinate
frame is again fixed to the current image; as a consequence the currently merged regions seem to move into negative
coordinates.

After the fourth image (figure 6.2c), clips no. 1 and 2 are completed; they are returned in the parameter Pre-
vMergedRegions. Note that they are still described in the coordinate frame of the previous image (depicted with
dashed arrow); to visualize them together with CurrMergedRegions they must be moved to the coordinate system
of the current image using the operator move_region:

move_region (FinishedClips, ClipsInCurrentImageCoordinates, \

-ImageHeight, 0)

Let’s get back to the task of merging images: To access the gray values around a clip, one must merge those images
over which the PrevMergedRegions can be spread. At the beginning, an empty image is created which can hold
4 images:

gen_image_const (TiledImage, 'byte', ImageWidth, \

ImageHeight * MaxImagesRegions)

At the end of each iteration, the “oldest” image, i.e., the image at the top, is cut off the tiled image using
crop_part, and the current image is merged at the bottom using tile_images_offset:

6.6 Line Scan Cameras A-41

crop_part (TiledImage, TiledImageMinusOldest, ImageHeight, 0, \

ImageWidth, (MaxImagesRegions - 1) * ImageHeight)

concat_obj (TiledImageMinusOldest, Image, ImagesToTile)

tile_images_offset (ImagesToTile, TiledImage, [0, \

(MaxImagesRegions - 1) * ImageHeight], [0, 0], [-1, \

-1], [-1, -1], [-1, -1], [-1, -1], ImageWidth, \

MaxImagesRegions * ImageHeight)

As noted above, the regions returned in PrevMergedRegions are described in the coordinate frame of the most
recent image (depicted with dashed arrows in figure 6.2c); to extract the corresponding gray values from the
tiled image, they must first be moved to its coordinate system (depicted with longer arrows) using the operator
move_region. Then, the surrounding rectangles are created using shape_trans, and finally the corresponding
gray values are extracted using add_channels:

move_region (FinishedClips, ClipsInTiledImageCoordinates, \

(MaxImagesRegions - 1) * ImageHeight, 0)

shape_trans (ClipsInTiledImageCoordinates, AroundClips, 'rectangle1')
add_channels (AroundClips, TiledImage, GrayValuesAroundClips)

M
is

ce
lla

ne
ou

s

A-42 Miscellaneous

HALCON Images A-43

Appendix A

HALCON Images

In the following, we take a closer look at the way HALCON represents and handles images. Of course, we won’t
bother you with details about the low-level representation and the memory management; HALCON takes care of
it in a way to guarantee optimal performance.

A.1 The Philosophy of HALCON Images

There are three important concepts behind HALCON’s image objects:

1. Multiple channels
Typically, one thinks of an image as a matrix of pixels. In HALCON, this matrix is called a channel, and
images may consist of one or more such channels. For example, gray value images consist of a single
channel, color images of three channels.

The advantage of this representation is that many HALCON operators automatically process all channels
at once; for example, if you want to subtract gray level or color images from another, you can apply
sub_image without worrying about the image type. Whether an operator processes all channels at once
can be seen in the parameter description in the reference manual: If an image parameter is described as
(multichannel-)image or (multichannel-)image(-array) (e.g., the parameter ImageMinuend of
sub_image), all channels are processed; if it is described as image or image(-array) (e.g., the parameter
Image of threshold), only the first channel is processed.

For more information about channels please refer to appendix A.3.2.

2. Various pixel types
Besides the standard 8 bit (type byte) used to represent gray value image, HALCON allows images to
contain various other data, e.g. 16 bit integers (type int2 or uint2) or 32 bit floating point numbers (type
real) to represent derivatives.

Most of the time you need not worry about pixel types, because HALCON operators that output images
automatically use a suitable pixel type. For example, the operator derivate_gauss creates a real image
to store the result of the derivation. As another example, if you connect to an image acquisition device
selecting a value > 8 for the parameter BitsPerChannel, a subsequent grab_image returns an uint2

image.

3. Arbitrarily-shaped region of interest
Besides the pixel information, each HALCON image also stores its so-called domain in form of a HAL-
CON region. The domain can be interpreted as a region of interest, i.e., HALCON operators (with some
exceptions) restrict their processing to this region.

The image domain inherits the full flexibility of a HALCON region, i.e., it can be of arbitrary shape and
size, can have holes, or even consist of unconnected points. For more information about domains please
refer to appendix A.3.3.

The power of HALCON’s approach lies in the fact that it offers full flexibility but does not require you to worry
about options you don’t need at the moment. For example, if all you do is grab and process standard 8 bit gray
value images, you can ignore channels and pixel types. At the moment you decide to use color images instead, all

H
A

LC
O

N
Im

ag
es

A-44 HALCON Images

you need to do is to add some lines to decompose the image into its channels. And if your camera / frame grabber
provides images with more than 8 bit pixel information, HALCON is ready for this as well.

A.2 Image Tuples (Arrays)

Another powerful mechanism of HALCON is the so-called tuple processing: If you want to process multiple
images in the same way, e.g., to smooth them, you can call the operator (e.g., mean_image) once passing all
images as a tuple (array), instead of calling it multiple times. Furthermore, some operators always return image
tuples, e.g., gen_gauss_pyramid or inspect_shape_model.

Whether an operator supports tuple processing can be seen in the parameter description in the reference manual:
If an input image parameter is described as image(-array) or (multichannel-)image(-array) (e.g., the
parameter Image of mean_image), it supports tuple processing; if it is described as image or (multichannel-
)image (e.g., the parameter Image of find_bar_code), only one image is processed.

For information about creating or accessing image tuples please refer to appendix A.3.6.

A.3 HALCON Operators for Handling Images

Below you find a brief overview of operators that allow to create HALCON images or to modify “technical aspects”
like the image size or the number of channels.

A.3.1 Creation

HALCON images are created automatically when you use operators like grab_image or read_image. You can
also create images from scratch using the operators listed in the HDevelop menu Operators . Image . Creation,
e.g., gen_image_const or gen_image1_extern (see also section 6.2 on page 34).

A.3.2 Channels

Operators for manipulating channels can be found in the HDevelop menu Operators . Image . Channel. You
can query the number of channels of an image with the operator count_channels. Channels can be accessed using
access_channel (which extracts a specified channel without copying), image_to_channels (which converts a
multi-channel image into an image tuple), or decompose2 etc. (which converts a multi-channel image into 2 or
more single-channel images). Vice versa, you can create a multi-channel image using channels_to_image or
compose2 etc., and add channels to an image using append_channel.

A.3.3 Domain

Operators for manipulating the domain of an image can be found in the HDevelop menu Operators . Image .
Domain. Upon creation of an image, its domain is set to the full image size. You can set it to a specified region
using change_domain. In contrast, the operator reduce_domain takes the original domain into account; the new
domain is equal to the intersection of the original domain with the specified region. Please also take a look at the
operator add_channels, which can be seen as complementary to reduce_domain.

A.3.4 Access

Operators for accessing information about a HALCON image can be found in the HDevelop menu Operators .
Image . Access. For example, get_image_pointer1 returns the size of an image and a pointer to the image
matrix of its first channel.

A.3 HALCON Operators for Handling Images A-45

A.3.5 Manipulation

You can change the size of an image using the operators change_format or crop_part, or other operators from
the HDevelop menu Operators . Image . Format. The menu Operators . Image . Type-Conversion lists
operators which change the pixel type, e.g., convert_image_type. Operators to modify the pixel values, can be
found in the menu Operators . Image . Manipulation, e.g., paint_gray, which copies pixels from one image
into another.

A.3.6 Image Tuples

Operators for creating and accessing image tuples can be found in the HDevelop menu Operators . Object .
Manipulation. Image tuples can be created using the operators gen_empty_obj and concat_obj, while the
operator select_obj allows to access an individual image that is part of a tuple.

H
A

LC
O

N
Im

ag
es

A-46 HALCON Images

Parameters Describing the Image A-47

Appendix B

Parameters Describing the Image

When opening a connection with open_framegrabber, you can specify the desired image format, e.g., its size or
the number of bits per pixel, using its nine parameters, which are described in the following.

B.1 Image Size

The following 6 parameters influence the size of the grabbed images: HorizontalResolution and Vertical-

Resolution specify the spatial resolution of the image in relation to the original size. For example, if you choose
VerticalResolution = 2, you get an image with half the height of the original as depicted in figure B.1b.
Another name for this process is (vertical and horizontal) subsampling.

With the parameters ImageWidth, ImageHeight, StartRow, and StartColumn you can grab only a part of the
(possibly subsampled) image; this is called image cropping. In figure B.1, the image part to be grabbed is marked
with a rectangle in the original (or subsampled) image; to the right, the resulting image is depicted. Note that
the resulting HALCON image always starts with the coordinates (0,0), i.e., the information contained in the
parameters StartRow and StartColumn cannot be recovered from the resulting image.

Depending on the involved components, both subsampling and image cropping may be executed at different points
during the transfer of an image from the camera into HALCON: in the camera, in the frame grabber, or in the
software. Image cropping in the camera or in the framegrabber is also called hardware cropping, whereas image
cropping on the software side is called software cropping. Please note that subsampling and image cropping do
not necessarily have a direct effect on the performance in form of a higher frame rate. In particular, for analog

a)

b)

c)

d)

Figure B.1: The effect of image resolution (subsampling) and image cropping (ImageWidth = 200, ImageHeight
= 100, StartRow = 50, StartColumn = 100): a) HorizontalResolution (HR) = VerticalResolution

(VR) = 1; b) HR = 1, VR = 2; c) HR = 2, VR = 1; d) HR = VR = 2.

Im
ag

e
P

ar
am

et
er

s

A-48 Parameters Describing the Image

cameras the frame rate is in most cases not affected. In contrast, for digital cameras, e.g., hardware cropping often
leads to a faster transfer and a higher frame rate. Subsampling or cropping on the software side has no effect on
the frame rate; besides, you can achieve a similar result using reduce_domain. If the frame grabber executes
the subsampling or cropping you may get a positive effect if the PCI bus is the bottleneck of your application and
prevents you from getting the full frame rate. Some acquisition interfaces allow dynamic image cropping via the
operator set_framegrabber_param.

Note that HALCON itself does not differentiate between area and line scan cameras as both produce images – the
former in form of frames, the latter in form of so-called pages created from successive lines (number specified in
the parameter ImageHeight). Section 6.6 on page 39 contains additional information regarding the use of line
scan cameras.

B.2 Image Data

The parameters described in the previous sections concentrated on the size of the images. The image data, i.e.,
the data contained in a pixel, is described with the parameters BitsPerChannel and ColorSpace. To understand
these parameters, a quick look at HALCON’s way to represent images is necessary: A HALCON image consists
of one or more matrices of pixels, which are called channels. Gray value images are represented as single-channel
images, while color images consist of three channels, e.g., for the red, green, and blue part of an RGB image. Each
image matrix (channel) consists of pixels, which may be of different data types, e.g., standard 8 bit (type byte) or
16 bit integers (type int2 or uint2) or 32 bit floating point numbers (type real). For detailed information about
HALCON images please refer to appendix A on page 43.

The two parameters correspond to the two main aspects of HALCON images: With the parameter ColorSpace,
you can select whether the resulting HALCON image is to be a (single-channel) gray value image (value ’gray’)
or a (multi-channel) color image (e.g., value ’rgb’). The parameter BitsPerChannel specifies how many bits are
transmitted per pixel per channel from the frame grabber to the computer; the pixel type of the HALCON image
is then chosen to accommodate the transmitted number of pixels.

For example, if a frame grabber is able to transmit 10 bit gray value images, select ColorSpace = ’gray’ and
BitsPerChannel = 10 and you will get a single-channel HALCON image of the type ’uint2’, i.e., 16 bit per
channel. Another example concerns RGB images: Some frame grabbers allow the values 8 and 5 for BitsPer-
Channel. In the first case, 3 × 8 = 24 bit are transmitted per pixel, while in the second case only 3 × 5 = 15
(padded to 16) bit are transmitted; in both cases, a three-channel ’byte’ image results.

Object Appearance A-49

Appendix C

Object Appearance

The previous chapters showed you how to acquire images. This appendix looks at the step that precedes the
image acquisition, i.e., it provides you with hints how to setup your vision system so that the acquired images
contain useful and correct information. For a correct measurement result the different components involved in the
process of taking images have to be considered. These are first of all the object of interest, the light that makes the
object visible, the camera, which stores the spatially assigned intensities of incoming light, and the geometrical
relation between the camera and the object of interest. Further, the individual components consist of different
single components, e.g., the camera comprises a lens and a CCD chip. All the involved components yield sources
for errors, e.g., caused by lens distortions or the digitalization process.

For all machine vision tasks and especially for highly accurate measuring you should be aware of the error sources
that are attached to your specific equipment and of their influence on the appearance of the objects of interest in
the image. A correct image analysis is only possible if the features of interest are clearly visible and for many tasks
also geometrically correct. Thus, we here discuss the

• lighting conditions (appendix C.1), which control the visibility of the object, and

• the geometrical relations between camera and object (appendix C.2), which influence the geometrical ap-
pearance of the objects in the image and control the further processing of the image.

C.1 Lighting

The success of an image analysis task, especially for highly accurate measuring purposes depends on the visibility
of the objects of interest in the image. To obtain images with clearly visible objects, the lighting conditions during
image acquisition have to be considered carefully. Dependent on the surface of the object and the direction of the
light, some parts of the object may reflect more light than others so that the image does not necessarily map the
actual object outlines but also reflections and shadows. With bad lighting conditions, too sparse or too much light
is received by the camera, which leads to low contrasts at the object borders at least in parts of the image. The task
to acquire images that represent the objects of interest as clear edges or homogeneous regions is rather demanding
and involves a certain part of intuition. This section summarizes some basic knowledge about lighting and tries to
convey to you a feeling for choosing the right lighting conditions for your specific task. In detail, it goes deeper
into

• the reflection properties of the object and

• the characteristics of the light source.

C.1.1 Reflection Properties of the Object

Before selecting a specific light source, the specific characteristics of the objects that are to be inspected have to be
considered. Dependent on an object’s surface light is differently reflected. We differentiate two extreme reflection
behaviors:

A
pp

ea
ra

nc
e

A-50 Object Appearance

• specular reflection and

• diffuse reflection.

With specular reflection a ray of light is reflected with almost full intensity into a single direction (see figure C.1,
left). Specular reflection is dominant for objects with a low surface roughness like a mirror or plain steel.

With diffuse reflection a ray of light is reflected as several rays of light with less intensity but various directions
(see figure C.1, right). Diffuse reflection is dominant for objects with a high surface roughness like a sheet of paper
or sand blasted surfaces.

Generally, objects can not clearly be assigned to one of the two reflection behaviors but lie somewhere in between.
Some objects have a rather luminous surface and react mainly with specular reflection, whereas objects with a
rather dull surface react mainly with a diffuse reflection.

For an object that reacts mainly with specular reflection, the intensity of the reflected light is rather strong but
due to its limited direction the object’s visibility in the image heavily depends on the angle of incidence the ray
of light comes from. To increase the chance that the reflected light hits the camera lense in a way the object is
clearly mapped in the image, a diffuse light source is recommended. Then, light waves come from and therefore
are reflected to different directions.

For an object that reacts mainly with a diffuse reflection less light is reflected, but, as the light waves are reflected
into several directions, the visibility of the object does not depend that much on the exact position of the light
source. The following section gives a brief overview of basic types of light sources and the influence of their
position in relation to the camera and object.

Figure C.1: The two (extreme) types of reflection: (left) specular reflection, (right) diffuse reflection.

C.1.2 Characteristics of the Light Source

Knowing the characteristics of the object, the light sources and their positions in relation to the object and camera
positions have to be selected. To obtain clear-cut edges without disturbing reflections you should not rely on day
light but use controlled light. In particular, when taking several images the lighting conditions additionally should
not change over time. The characteristics of the lighting can be split into

• the specific type of light source, based on the direction the light waves are propagated to, and

• the spatial relation between light source, object, and camera.

Similar to the reflection properties of object surfaces, light sources can produce light that is limited to specific
directions or light that emanates into different directions. We differentiate between

• directed light and

• diffuse light.

Directed light is described by rays of light following a defined direction. This may be a single point light that
emanates concentric light when placed near the object and almost parallel light when placed far away from the
object (see figure C.2, left), but also a telecentric light for which the rays of light are adjusted into exactly parallel
directions using a collimator lense (see figure C.2, middle). As all rays of light come from and are reflected to
similar directions, strong shadows and reflections may occur. For non-flat objects a telecentric light may be more
suitable because a point light may lead to small perspective distortions. With a telecentric light the 2D outline of
the object in the image corresponds to the cross-section of the 3D object and the size of the object in the image is

C.1 Lighting A-51

independent of the distance between the camera and the object. But note that telecentric light is mainly suited for
small objects as the light only hits the whole object to be measured if the object is smaller or the same size as the
diameter of the lense.

Diffuse light scatters the rays of light, so that an object is lighted from several directions. That way, strong shadows
and reflections on the object can be minimized. In figure C.2 the diffuse light is illustrated as a single point light
source that is scattered into several rays of light with different directions using a diffuser. In practice, several
diffuse light sources are placed at different positions, e.g., in form of a ring light, to disperse the light as much as
possible.

Diffuse lightDirected point light Directed telecentric light

Light sourceLight source

Diffuser
Collimator lens

Object

Light source

Object Object

Figure C.2: Directed and diffuse light: (left) point light, (middle) telecentric light, and (right) diffuse light.

Besides the propagation of the light waves seen from the light source, the direction of light seen from the object-
camera unit has to be considered for a successful image analysis. Figure C.3 illustrates the different lighting
methods. They are coarsely differentiated into

• front light and

• back light.

Coaxial

Camera ObjectLight source

Front light Back light

Lightfield Darkfield

Figure C.3: Light sources differentiated due to their spatial relation to object and camera.

Front light is used for all objects for which the structure of the surface or any components on the surface are of
interest, e.g., if scratches in the surface of an object are searched for or if several object parts are to be investigated,
e.g., the different components of a board. Front light can be differentiated into

A
pp

ea
ra

nc
e

A-52 Object Appearance

• lightfield lighting (including coaxial lighting) and

• darkfield lighting.

With a lightfield lighting the light approximately hits the object surface in a right angle. A special case of a
lightfield lighting is the coaxial lighting, which emanates directly from the direction of the camera lense. The light
of a darkfield lighting comes from the side, i.e., it hits the object approximately parallel to its surface. Lightfield
lighting is the standard lighting that is used for most applications in machine vision, whereas darkfield lighting is
needed to highlight object parts that are not visible when lighted from above, e.g., relief structures in the object’s
surface.

Back light is used if the outer contour of the object gives the relevant information. The light source is placed
behind the object and the object is mapped to the image as a homogeneous dark region against a light background.
Opposite to images with widespread gray values, such a ’binary’ image is rather easy to process.

Dependent on the object’s surface and your specific task, you combine front or back light with a directed or diffuse
light source. The list of light sources introduced here does not claim to be complete, but tries to convey to you
a first impression on the complexity of the lighting task. To get more information about these and further light
sources, e.g., also about polarized light or x-rays, we recommend to read more comprehensive literature with the
specific focus on lighting.

C.2 Geometry

The lighting conditions are important to obtain clearly visible objects in the image. To obtain geometrically correct
images of the objects of interest, we additionally have to consider the geometrical conditions between the camera
and the object of interest during the image acquisition. The geometrical correctness of the object’s representation in
the image depends on various influences like the used equipment and the geometrical relation between the camera
and the object plane. The geometrical distortions with the most influence are lense distortions and perspective
distortions. These are described in detail in the Solution Guide III-C, section 3.4 on page 80. There, you also get
detailed information about the techniques to compensate both distortions, in particular using camera calibration
and a following transformation of either the image, a contour, or a set of image points into world coordinates. The
intention of this section is to give you the basic information about the relation between camera and object and thus
help you to plan the right camera position for your specific task.

Two main concepts for the relation between the pose (position and orientation) of a camera and the pose of the
object are relevant for measuring in an image:

• the orthogonal view and

• the oblique view.

In the orthogonal view the camera looks at the object plane at a right angle (see figure C.4, left). Thus, for a
flat object and a normal lense the length of a line’s representation in the image corresponds to the length of the
corresponding real line multiplied by a unique scale factor. For non-flat objects, due to perspective distortions a
normal lense may cause small distortions at the border of the object, dependent also on the position of the object in
the image. These distortions can be avoided using a camera with a telecentric lense. In contrast to the telecentric
lense used for directing the light rays of a telecentric light source, the telecentric lense of a camera does not send
but receive parallel rays of light. But similar to the telecentric light, a telecentric lense in a camera is mainly suited
for small objects as the whole object is only mapped completely in the image if the object is smaller or the same
size as the diameter of the lense.

The oblique view is used if limited space does not allow for a setup with an orthogonal view. Here, the angle
between the camera and the object plane can be arbitrary (see figure C.4, right). The oblique view leads to a per-
spectively distorted geometry of the image content. Thus, the length of a line in the image can not be translated
directly to the length of the real object. A transformation is necessary that reconstructs the geometry of the orthog-
onal case. The parameters needed for the transformation can be obtained by calibrating the camera (see Solution
Guide III-C).

C.2 Geometry A-53

Resulting image

Oblique viewOrthogonal view

Resulting image

90° 60°

Figure C.4: The two views on a plane: (left) orthogonal view and (right) oblique view.

A
pp

ea
ra

nc
e

A-54 Object Appearance

Index A-55

Index

acquire image in volatile mode, 23
acquire image with asynchronously resettable cam-

era, 23, 27
acquire image(s), 21
acquire image(s) continuously, 26
acquire image(s) from multiple cameras simultane-

ously, 31
acquire image(s) in real time, 24
acquire image(s) with external trigger, 28

back lighting, 50

callback function, 38
channel, 43
coaxial lighting, 50
connect to multiple image acquisition boards, 13
connect to multiple image acquisition ports, 13
connect to single camera, 13

darkfield lighting, 50
diffuse lighting, 50
diffuse reflection, 49
directed lighting, 50
domain (ROI), 43

error handling for image acquisition, 35

front lighting, 50

grab image arrays or preprocessed image data, 35

image, 43
image acquisition interface, 7
image array, 44
image size, 47

lightfield lighting, 50
lighting (illumination), 49

non-real-time image acquisition, 21

open image acquisition device, 11
open image acquisition device for port switching, 13
open image acquisition device for simultaneous

grabbing, 14

pixel data, 48
pixel type, 43

real-time image acquisition, 21

specular reflection, 49

unsupported image acquisition device, 34
use line scan camera, 39
use standardized image acquisition interfaces, 33

In
de

x

A-56 Index

	1 The Philosophy Behind the HALCON Acquisition Interfaces
	2 A First Example
	3 Connecting to Your Image Acquisition Device
	3.1 Opening a Connection to a Specified Configuration
	3.2 Connecting to Multiple Boards and Cameras
	3.2.1 Single Camera
	3.2.2 Multiple Boards
	3.2.3 Multiple Handles Per Board
	3.2.4 Port Switching
	3.2.5 Simultaneous Grabbing (Only For Specific Interfaces)

	3.3 Requesting Information About the Image Acquisition Interface

	4 Configuring the Acquisition
	4.1 General Parameters
	4.2 Special Parameters
	4.3 Fixed vs. Dynamic Parameters

	5 The Various Modes of Grabbing Images
	5.1 Real-Time Image Acquisition
	5.1.1 Non-Real-Time Grabbing Using grab_image
	5.1.2 Grabbing Without Delay Using Asynchronously Resettable Cameras
	5.1.3 Volatile Grabbing
	5.1.4 Real-Time Grabbing Using grab_image_async
	5.1.5 Continuous Grabbing
	5.1.6 Using grab_image_async Together With Asynchronously Resettable Cameras
	5.1.7 Specifying a Maximum Delay

	5.2 Using an External Trigger
	5.2.1 Special Parameters for External Triggers

	5.3 Acquiring Images From Multiple Cameras
	5.3.1 Dynamic Port Switching and Asynchronous Grabbing
	5.3.2 Simultaneous Grabbing

	6 Miscellaneous
	6.1 Acquiring Images From Standardized Image Acquisition Devices
	6.2 Acquiring Images From Unsupported Image Acquisition Devices
	6.3 Grabbing Image Arrays and Preprocessed Image Data
	6.4 Error Handling
	6.4.1 Error Handling in HDevelop
	6.4.2 Error Handling Using HALCON/C
	6.4.3 Error Handling Using HALCON/C++
	6.4.4 Error Handling Using HALCON/.NET

	6.5 Callback Functions
	6.6 Line Scan Cameras

	A HALCON Images
	A.1 The Philosophy of HALCON Images
	A.2 Image Tuples (Arrays)
	A.3 HALCON Operators for Handling Images
	A.3.1 Creation
	A.3.2 Channels
	A.3.3 Domain
	A.3.4 Access
	A.3.5 Manipulation
	A.3.6 Image Tuples

	B Parameters Describing the Image
	B.1 Image Size
	B.2 Image Data

	C Object Appearance
	C.1 Lighting
	C.1.1 Reflection Properties of the Object
	C.1.2 Characteristics of the Light Source

	C.2 Geometry

	Index

